328 research outputs found

    Bloom drivers of the potentially harmful dinoflagellate Prorocentrum minimum (Pavillard) Schiller in a south eastern temperate Australian estuary

    Full text link
    Β© 2018 Elsevier Ltd Harmful algal blooms are an increasing concern in the estuarine reaches of the Hawkesbury-Nepean River, one of the largest coastal rivers systems in south eastern Australia. In the austral spring of 2016, an unprecedented bloom of the harmful mixotrophic dinoflagellate Prorocentrum minimum occurred in Berowra Creek (maximum cell abundance 1.9E+06 cells Lβˆ’1, 89% of the total phytoplankton community), a major tributary of this river system. In response to this bloom, our study utilises an estuary-wide, thirteen-year time series of phytoplankton abundance and environmental data to examine the spatial and temporal patterns of this harmful alga and its potential bloom drivers in this system. P. minimum cell densities and environmental parameters varied over large spatial scales, with sites located in the main channel of the estuary significantly differing from those in the more urbanized tributary of Berowra Creek. Generalised additive modelling outputs suggested that blooms of P. minimum are complex, but generally corresponded to a spatial gradient of eutrophication and salinity, whereby P. minimum growth and concomitant high chlorophyll-a concentrations were enhanced at sites that were generally less saline and more eutrophic than others. Furthermore, temporal patterns suggested that blooms occurred abruptly and lasted up to three weeks, most often during the austral autumn to spring. While significant correlations were observed between rainfall and nutrients at all other sites, suggesting a pathway for nutrient availability, the association between rainfall and nutrient delivery was generally not observed in Berowra Creek (a 15-m deep site) suggesting that a continual supply of nutrients, coupled with unique bathymetry and water residence time at this site, are the most likely contributing factors to phytoplankton growth. This study presents the most comprehensive examination of P. minimum in any southern hemisphere estuary to date and highlights the importance of continued monitoring of HABs and the important role that anthropogenic inputs have in driving blooms of P. minimum in this oyster-growing river/estuary system

    Effect of COVID-19 response policies on walking behavior in US cities.

    Get PDF
    The COVID-19 pandemic is causing mass disruption to our daily lives. We integrate mobility data from mobile devices and area-level data to study the walking patterns of 1.62 million anonymous users in 10 metropolitan areas in the United States. The data covers the period from mid-February 2020 (pre-lockdown) to late June 2020 (easing of lockdown restrictions). We detect when users were walking, distance walked and time of the walk, and classify each walk as recreational or utilitarian. Our results reveal dramatic declines in walking, particularly utilitarian walking, while recreational walking has recovered and even surpassed pre-pandemic levels. Our findings also demonstrate important social patterns, widening existing inequalities in walking behavior. COVID-19 response measures have a larger impact on walking behavior for those from low-income areas and high use of public transportation. Provision of equal opportunities to support walking is key to opening up our society and economy

    Understanding consumer demand for new transport technologies and services, and implications for the future of mobility

    Full text link
    The transport sector is witnessing unprecedented levels of disruption. Privately owned cars that operate on internal combustion engines have been the dominant modes of passenger transport for much of the last century. However, recent advances in transport technologies and services, such as the development of autonomous vehicles, the emergence of shared mobility services, and the commercialization of alternative fuel vehicle technologies, promise to revolutionise how humans travel. The implications are profound: some have predicted the end of private car dependent Western societies, others have portended greater suburbanization than has ever been observed before. If transport systems are to fulfil current and future needs of different subpopulations, and satisfy short and long-term societal objectives, it is imperative that we comprehend the many factors that shape individual behaviour. This chapter introduces the technologies and services most likely to disrupt prevailing practices in the transport sector. We review past studies that have examined current and future demand for these new technologies and services, and their likely short and long-term impacts on extant mobility patterns. We conclude with a summary of what these new technologies and services might mean for the future of mobility.Comment: 15 pages, 0 figures, book chapte

    Mtss1 promotes cell-cell junction assembly and stability through the small GTPase Rac1

    Get PDF
    Cell-cell junctions are an integral part of epithelia and are often disrupted in cancer cells during epithelial-to-mesenchymal transition (EMT), which is a main driver of metastatic spread. We show here that Metastasis suppressor-1 (Mtss1; Missing in Metastasis, MIM), a member of the IMD-family of proteins, inhibits cell-cell junction disassembly in wound healing or HGF-induced scatter assays by enhancing cell-cell junction strength. Mtss1 not only makes cells more resistant to cell-cell junction disassembly, but also accelerates the kinetics of adherens junction assembly. Mtss1 drives enhanced junction formation specifically by elevating Rac-GTP. Lastly, we show that Mtss1 depletion reduces recruitment of F-actin at cell-cell junctions. We thus propose that Mtss1 promotes Rac1 activation and actin recruitment driving junction maintenance. We suggest that the observed loss of Mtss1 in cancers may compromise junction stability and thus promote EMT and metastasis

    Chromatin compaction in terminally differentiated avian blood cells: the role of linker histone H5 and non-histone protein MENT

    Get PDF
    Chromatin has a tendency to shift from a relatively decondensed (active) to condensed (inactive) state during cell differentiation due to interactions of specific architectural and/or regulatory proteins with DNA. A promotion of chromatin folding in terminally differentiated avian blood cells requires the presence of either histone H5 in erythrocytes or non-histone protein, myeloid and erythroid nuclear termination stage-specific protein (MENT), in white blood cells (lymphocytes and granulocytes). These highly abundant proteins assist in folding of nucleosome arrays and self-association of chromatin fibers into compacted chromatin structures. Here, we briefly review structural aspects and molecular mode of action by which these unrelated proteins can spread condensed chromatin to form inactivated regions in the genome

    Uniform electron gases

    Full text link
    We show that the traditional concept of the uniform electron gas (UEG) --- a homogeneous system of finite density, consisting of an infinite number of electrons in an infinite volume --- is inadequate to model the UEGs that arise in finite systems. We argue that, in general, a UEG is characterized by at least two parameters, \textit{viz.} the usual one-electron density parameter ρ\rho and a new two-electron parameter η\eta. We outline a systematic strategy to determine a new density functional E(ρ,η)E(\rho,\eta) across the spectrum of possible ρ\rho and η\eta values.Comment: 8 pages, 2 figures, 5 table

    Land use, transport, and population health: estimating the health benefits of compact cities.

    Get PDF
    Using a health impact assessment framework, we estimated the population health effects arising from alternative land-use and transport policy initiatives in six cities. Land-use changes were modelled to reflect a compact city in which land-use density and diversity were increased and distances to public transport were reduced to produce low motorised mobility, namely a modal shift from private motor vehicles to walking, cycling, and public transport. The modelled compact city scenario resulted in health gains for all cities (for diabetes, cardiovascular disease, and respiratory disease) with overall health gains of 420-826 disability-adjusted life-years (DALYs) per 100β€ˆ000 population. However, for moderate to highly motorised cities, such as Melbourne, London, and Boston, the compact city scenario predicted a small increase in road trauma for cyclists and pedestrians (health loss of between 34 and 41 DALYs per 100β€ˆ000 population). The findings suggest that government policies need to actively pursue land-use elements-particularly a focus towards compact cities-that support a modal shift away from private motor vehicles towards walking, cycling, and low-emission public transport. At the same time, these policies need to ensure the provision of safe walking and cycling infrastructure. The findings highlight the opportunities for policy makers to positively influence the overall health of city populations

    Experimental Rugged Fitness Landscape in Protein Sequence Space

    Get PDF
    The fitness landscape in sequence space determines the process of biomolecular evolution. To plot the fitness landscape of protein function, we carried out in vitro molecular evolution beginning with a defective fd phage carrying a random polypeptide of 139 amino acids in place of the g3p minor coat protein D2 domain, which is essential for phage infection. After 20 cycles of random substitution at sites 12–130 of the initial random polypeptide and selection for infectivity, the selected phage showed a 1.7Γ—10(4)-fold increase in infectivity, defined as the number of infected cells per ml of phage suspension. Fitness was defined as the logarithm of infectivity, and we analyzed (1) the dependence of stationary fitness on library size, which increased gradually, and (2) the time course of changes in fitness in transitional phases, based on an original theory regarding the evolutionary dynamics in Kauffman's n-k fitness landscape model. In the landscape model, single mutations at single sites among n sites affect the contribution of k other sites to fitness. Based on the results of these analyses, k was estimated to be 18–24. According to the estimated parameters, the landscape was plotted as a smooth surface up to a relative fitness of 0.4 of the global peak, whereas the landscape had a highly rugged surface with many local peaks above this relative fitness value. Based on the landscapes of these two different surfaces, it appears possible for adaptive walks with only random substitutions to climb with relative ease up to the middle region of the fitness landscape from any primordial or random sequence, whereas an enormous range of sequence diversity is required to climb further up the rugged surface above the middle region
    • …
    corecore