6,654 research outputs found

    Nanocellulose Oxidation - Fundamentals and Application in Hydrogels

    Get PDF
    The adaptable surface chemistry of cellulose nanocrystals (CNCs) makes them outstanding; it provides colloidal stability, which is essential for engineering use, to commercially-available CNCs. Colloidal stability is achieved by the bulky negatively-charged sulfate half-ester groups on the surface that it manufactures itself via the use of sulfuric acid. The surface chemistry of CNCs can also be adapted into dialdehyde cellulose nanocrystals (DAC) by periodate oxidation in the presence of the sulfate half-ester groups. The oxidation extends the range of applications of CNCs. The objective of this thesis is to elucidate the role played by the sulfate half-ester groups on the oxidation reaction, both in the kinetics and its products. The results demonstrate that the oxidation reaction reduces the number of sulfate half-ester groups, which impacts on the colloidal stability, the size of the resulting product properties and, consequently, the DAC applications. A rheology study and a proof-of-concept demonstration are also performed to verify whether CNC derivatives could reinforce emulsions solidified by gelatin, as this could extend the range of CNCs in the field of microwave technology to be used as a fat phantom. The gelatin emulsions reinforced by CNC derivatives maintain the storage modulus above the loss modulus at temperatures above 40 \ubaC. The thermal stability of the reinforced emulsions could permit the successful implementation of these gels in the field of microwave technology. CNCs are possibly the better candidate than DAC for the reinforcement due to a combination of the ease of the phantom production and performance

    Carboxylation of sulfated cellulose nanocrystals by family AA9 lytic polysaccharide monooxygenases

    Get PDF
    Lytic polysaccharide monooxygenases (LPMOs) from the auxiliary activity 9 (AA9) family act on cellulose through an oxidative mechanism that improves cellulose saccharification in concert with other cellulolytic enzymes. Degradation and solubilization of cellulose chains are known to take place when various cellulose hierarchies, fibers, nanofibers, and cellulose nanocrystals (CNCs) are subjected to LPMOs, either alone or in combination with other cellulose acting enzymes. The use of LPMOs to modify and prepare CNCs has been proposed mostly in top-down synthesis from larger hierarchies. Here, we attempted a direct surface modification of CNCs with LPMOs with the aim of investigating the role played by the charged sulfate groups on CNCs. Sulfate half-ester\ua0groups are introduced during the preparation of CNCs from cellulose using sulfuric acid. It has been proposed that the charged sulfate groups hinder the binding of enzymes or affinity of charged reactants on the surface and hence reduce enzymatic and chemical reaction efficiency. We demonstrate the modification of commercial sulfated CNCs using a family AA9 LPMO. Conductometric titration and spectrometric characterization of the oxidized particles indicate that carboxylation of up to 10% was possible without degradation of the crystals. Unexpectedly, the carboxyl groups could only be introduced to the crystals containing\ua0sulfate groups, while desulfated crystals remained unfunctionalized. This was deemed to be due to that the sulfate groups limit the adsorption of the enzymes and hence modulate the cuts facilitated by the enzymes on the surface. This limits the release of chains from the surface and enables the carboxylation of the insoluble substrate rather than the release of the solubilized chains. This study highlights the importance of analyzing both the solid and soluble reaction products to gain insights into the oxidation mechanism. We demonstrated that 10% functionalization suffices for the use of CNCs in coupling chemistry

    Fat tissue equivalent phantoms for microwave applications by reinforcing gelatin with nanocellulose

    Get PDF
    Tissue mimicking phantom materials with thermal and dielectric equivalence are vital for the development of microwave diagnostics and treatment. The current phantoms representing fat tissue are challenged by mechanical integrity at relevant temperatures coupled with complex production protocols. We have employed two types of nanocellulose (cellulose nanocrystals and oxidized cellulose nanocrystals) as reinforcement in gelatin stabilized emulsions for mimicking fat tissue. The nanocellulose-gelatin stabilized emulsions were evaluated for their dielectric properties, the moduli-temperature dependence using small deformation rheology, stress-strain behavior using large deformation, and their compliance to quality assurance guidelines for superficial hyperthermia. All emulsions had low permittivity and conductivity within the lower microwave frequency band, accompanied by fat equivalent thermal properties. Small deformation rheology showed reduced temperature dependence of the moduli upon addition of nanocellulose, independent of type. The cellulose nanocrystals gelatin reinforced emulsion complied with the quality assurance guidelines. Hence, we demonstrate that the addition of cellulose nanocrystals to gelatin stabilized emulsions has the potential to be used as fat phantoms for the development of microwave diagnostics and treatment

    The effect of sulfate half-ester groups on cellulose nanocrystal periodate oxidation

    Get PDF
    Periodate oxidation introduces aldehyde functionality to cellulose. The use of dialdehyde cellulose has been demonstrated for crosslinking and as a chemical intermediate towards functionalized cellulose. Commercially available cellulose nanocrystals (CNCs) typically carry a surface sulfate half-ester functionality, which results from their manufacture via sulfuric acid hydrolysis and subsequent esterification. The sulfate half-ester group is a bulky group carrying a net negative charge above pH 2 that modifies the colloidal and electro-chemical properties of the CNCs. Periodate oxidation is regioselective to the bond between carbons in positions 2 and 3 in the anhydroglucose unit while the sulfate half-ester groups are mostly considered to be located in carbon in position 6. This regioselectivity could be the reason why the role played by the sulfate half-ester group on modification by periodate oxidation has not previously been elucidated. Here, the influence of the sulfate half-ester on the oxidation of CNCs, which is shown to steer the oxidation kinetics and the properties of the resulting materials, is studied. Conventional physicochemical analysis of the oxidant consumption is accompanied by elemental analysis, Fourier-transform infrared, X-ray photoelectron and solid-state nuclear magnetic resonance spectroscopy, and wide-angle x-ray scattering analyses; the zeta potential is used to characterize the colloidal properties of the suspensions and atomic force microscopy for determining particle dimensions. The presence of the sulfate half-ester group decreases the rate of oxidation. However, the content of the sulfate half-ester groups decreases when degree of oxidation reaches approx. 50%. We demonstrate that the CNC surfaces are affected by the oxidation beyond the C2–C3 bond cleavage: insight into the kinetics of the oxidation process is a prerequisite for optimizing CNC oxidation

    Quantitative trait loci for bone traits segregating independently of those for growth in an F-2 broiler X layer cross

    Get PDF
    An F broiler-layer cross was phenotyped for 18 skeletal traits at 6, 7 and 9 weeks of age and genotyped with 120 microsatellite markers. Interval mapping identified 61 suggestive and significant QTL on 16 of the 25 linkage groups for 16 traits. Thirty-six additional QTL were identified when the assumption that QTL were fixed in the grandparent lines was relaxed. QTL with large effects on the lengths of the tarsometatarsus, tibia and femur, and the weights of the tibia and femur were identified on GGA4 between 217 and 249 cM. Six QTL for skeletal traits were identified that did not co-locate with genome wide significant QTL for body weight and two body weight QTL did not coincide with skeletal trait QTL. Significant evidence of imprinting was found in ten of the QTL and QTL x sex interactions were identified for 22 traits. Six alleles from the broiler line for weight- and size-related skeletal QTL were positive. Negative alleles for bone quality traits such as tibial dyschondroplasia, leg bowing and tibia twisting generally originated from the layer line suggesting that the allele inherited from the broiler is more protective than the allele originating from the layer

    The Search for Invariance: Repeated Positive Testing Serves the Goals of Causal Learning

    Get PDF
    Positive testing is characteristic of exploratory behavior, yet it seems to be at odds with the aim of information seeking. After all, repeated demonstrations of one’s current hypothesis often produce the same evidence and fail to distinguish it from potential alternatives. Research on the development of scientific reasoning and adult rule learning have both documented and attempted to explain this behavior. The current chapter reviews this prior work and introduces a novel theoretical account—the Search for Invariance (SI) hypothesis—which suggests that producing multiple positive examples serves the goals of causal learning. This hypothesis draws on the interventionist framework of causal reasoning, which suggests that causal learners are concerned with the invariance of candidate hypotheses. In a probabilistic and interdependent causal world, our primary goal is to determine whether, and in what contexts, our causal hypotheses provide accurate foundations for inference and intervention—not to disconfirm their alternatives. By recognizing the central role of invariance in causal learning, the phenomenon of positive testing may be reinterpreted as a rational information-seeking strategy

    A new cell primo-culture method for freshwater benthic diatom communities

    Get PDF
    A new cell primo-culture method was developed for the benthic diatom community isolated from biofilm sampled in rivers. The approach comprised three steps: (1) scraping biofilm from river pebbles, (2) diatom isolation from biofilm, and (3) diatom community culture. With a view to designing a method able to stimulate the growth of diatoms, to limit the development of other microorganisms, and to maintain in culture a community similar to the original natural one, different factors were tested in step 3: cell culture medium (Chu No 10 vs Freshwater “WC” medium modified), cell culture vessel, and time of culture. The results showed that using Chu No 10 medium in an Erlenmeyer flask for cell culture was the optimal method, producing enough biomass for ecotoxicological tests as well as minimising development of other microorganisms. After 96 h of culture, communities differed from the original communities sampled in the two rivers studied. Species tolerant of eutrophic or saprobic conditions were favoured during culture. This method of diatom community culture affords the opportunity to assess, in vitro, the effects of different chemicals or effluents (water samples andindustrial effluents) on diatom communities, as well as on diatom cells, from a wide range of perspectives

    Mapping opportunities and challenges for rewilding in Europe

    Get PDF
    Farmland abandonment takes place across the world due to socio-economic and ecological drivers. In Europe agricultural and environmental policies aim to prevent abandonment and halt ecological succession. Ecological rewilding has been recently proposed as an alternative strategy. We developed a framework to assess opportunities for rewilding across different dimensions of wilderness in Europe. We mapped artificial light, human accessibility based on transport infrastructure, proportion of harvested primary productivity (i.e., ecosystem productivity appropriated by humans through agriculture or forestry), and deviation from potential natural vegetation in areas projected to be abandoned by 2040. At the continental level, the levels of artificial light were low and the deviation from potential natural vegetation was high in areas of abandonment. The relative importance of wilderness metrics differed regionally and was strongly connected to local environmental and socio-economic contexts. Large areas of projected abandonment were often located in or around Natura 2000 sites. Based on these results, we argue that management should be tailored to restore the aspects of wilderness that are lacking in each region. There are many remaining challenges regarding biodiversity in Europe, but megafauna species are already recovering. To further potentiate large-scale rewilding, Natura 2000 management would need to incorporate rewilding approaches. Our framework can be applied to assessing rewilding opportunities and challenges in other world regions, and our results could guide redirection of subsidies to manage social-ecological systems
    corecore