44 research outputs found

    Coverage and Rate Analysis for Downlink HetNets Using Modified Reverse Frequency Allocation Scheme

    Get PDF
    The deployment of heterogeneous networks (HetNets) inevitably demands the design of interference management techniques to elevate the overall network performance. This paper presents a novel interference mitigation technique known as reverse frequency allocation (RFA), which provides an efficient resource allocation compared with the other state-of-the-art techniques. RFA reverses the transmission direction of interferers, thereby minimizing the cross-tier interference. Eventually, better coverage as well as increased data rates are achieved by providing complementary spectrum to the macro and pico users. In this paper, we present a tractable approach for modeling HetNets under the proposed RFA scheme. Specifically, we employ well known tools from stochastic geometry to derive closed-form expressions for the coverage probability and rate coverage in two-tier cellular network employing RFA and its variants. The modeling is performed using two approaches; first, where the base stations and users are modeled as independent Poisson point processes (PPPs) and second, the interference is approximated using the fluid model. It is shown that the results obtained from the PPP model are accurate for higher values of path loss exponents, while the results from fluid model are useful for smaller values of path loss exponents. The plausibility of model is validated through the Monte-Carlo simulations and the network performance is evaluated in terms of coverage probability, coverage rate, and outage capacity. The results demonstrate that 2-RFA yields outage capacity gains of 13% as compared with the soft fractional frequency reuse scheme, whereas, the performance gains can be further improved by 14% by employing the proposed variants of RFA

    Cellular strategies for retinal repair by photoreceptor replacement

    Get PDF
    Loss of photoreceptors due to retinal degeneration is a major cause of blindness in the developed world. While no effective treatment is currently available, cell replacement therapy, using pluripotent stem cell-derived photoreceptor precursor cells, may be a feasible future treatment. Recent reports have demonstrated rescue of visual function following the transplantation of immature photoreceptors and we have seen major advances in our ability to generate transplantation-competent donor cells from stem cell sources. Moreover, we are beginning to realise the possibilities of using endogenous populations of cells from within the retina itself to mediate retinal repair. Here, we present a review of our current understanding of endogenous repair mechanisms together with recent progress in the use of both ocular and pluripotent stem cells for the treatment of photoreceptor loss. We consider how our understanding of retinal development has underpinned many of the recent major advances in translation and moved us closer to the goal of restoring vision by cellular means

    Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions

    Get PDF
    Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell--based biorefineries.This study was supported by the Portuguese Foundation for Science and Technology (FCT) by the strategic funding of UID/BIO/04469/2013 unit, MIT Portugal Program (Ph.D. grant PD/BD/128247/ 2016 to Joana T. Cunha), Ph.D. grant SFRH/BD/130739/2017 to Carlos E. Costa, COMPETE 2020 (POCI-01-0145-FEDER-006684), BioTecNorte operation (NORTE-01-0145-FEDER-000004), YeasTempTation (ERA-IB-2-6/0001/2014), and MultiBiorefinery project (POCI-01-0145-FEDER-016403). Funding by the Institute for Bioengineering and Biosciences (IBB) from FCT (UID/BIO/04565/2013) and from Programa Operacional Regional de Lisboa 2020 (Project N. 007317) was also receiveinfo:eu-repo/semantics/publishedVersio

    Evidence for widespread hydrated minerals on asteroid (101955) Bennu

    Get PDF
    Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 µm and thermal infrared spectral features that are most similar to those of aqueously altered CM-type carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of metres observed to date. In the visible and near-infrared (0.4 to 2.4 µm) Bennu’s spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth

    The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements

    Get PDF
    The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids

    Investigating genetic factors underlying hypopituitarism and septo-optic dysplasia in humans

    No full text
    Differentiation of pituitary progenitors into the six different hormone-producing cell types that form the mature organ is a complex process that requires the coordinated spatial and temporal expression of multiple genes. Over the past decades, it has become apparent that mutations in a number of these developmentally important pituitary-specific transcription factors, including Hesx1 and Sox2, leads to hypopituitarism with or without syndromic features such as septo-optic dysplasia (SOD). This thesis extends previous work in further understanding basic pituitary development with the ultimate goal of increasing knowledge of hypopituitarism and SOD in humans. Hesx1 was one of the first genes implicated in these conditions. It is a homeobox transcriptional repressor that is required for normal anterior forebrain and pituitary development in mouse and human. Here a dual approach was used to advance our understanding of Hesx1 function in the developing hypothalamic-pituitary axis (HPA). Firstly, phenotypic analysis of the neuroendocrine hypothalamus in Hesx1 mouse models has revealed an original role for Hesx1 in the development of this structure, providing a strong correlation with human SOD cases. Secondly, functional analysis of novel HESX1 mutations has showed that mutations occurring within the homeodomain impede DNA binding whilst repressor activity is maintained, providing more insight into the molecular function of HESX1. Sox2 is a SOXB1-HMG-box transcription factor that has been recently associated with hypopituitarism, demonstrating a requirement of SOX2 for normal HPA development and function in humans. We used a condition approach in mice to investigate the pathogenesis of these defects. Our observations demonstrate that Sox2 is required for the normal proliferation of pituitary progenitors, and for the terminal differentiation of the Pit1 lineage. Furthermore, Hesx1Cre/+;Sox2fl/fl embryos exhibit reduced GnRH neurogenesis, providing insights into the characteristic hypogonadotrophic hypogonadism observed in SOX2 patients. Combined, the Hesx1Cre/+;Sox2fl/fl mouse provides a suitable model for understanding the pathogenesis of SOX2 mutations in humans
    corecore