118 research outputs found

    Early ART-initiation and longer ART duration reduces HIV-1 proviral DNA levels in children from the CHER trial

    Get PDF
    Background Reduction of the reservoir of latent HIV-infected cells might increase the possibility of long-term remission in individuals living with HIV. We investigated factors associated with HIV-1 proviral DNA levels in children receiving different antiretroviral therapy (ART) strategies in the children with HIV early antiretroviral therapy (CHER) trial. Methods Infants with HIV  <  12 weeks old with CD4%  ≥  25% were randomized in the CHER trial to early limited ART for 40 or 96 weeks (ART-40 W, ART-96 W), or deferred ART (ART-Def). For ART-Def infants or following ART interruption in ART-40 W/ART-96 W, ART was started/re-started for clinical progression or CD4%  <  25%. In 229 participants, HIV-1 proviral DNA was quantified by PCR from stored peripheral blood mononuclear cells from children who had received  ≥  24 weeks ART and two consecutive undetectable HIV-1 RNA 12–24 weeks apart. HIV-1 proviral DNA was compared between ART-Def and ART-96 W at week 96, and in all arms at week 248. Factors associated with HIV-1 proviral DNA levels were evaluated using linear regression. Findings Longer duration of ART was significantly associated with lower HIV-1 proviral DNA at both 96 (p  =  0.0003) and 248 weeks (p  =  0.0011). Higher total CD8 count at ART initiation was associated with lower HIV-1 proviral DNA at both 96 (p  =  0.0225) and 248 weeks (p  =  0.0398). Week 248 HIV-1 proviral DNA was significantly higher in those with positive HIV-1 serology at week 84 than those with negative serology (p  =  0.0042). Intepretation Longer ART duration is key to HIV-1 proviral DNA reduction. Further understanding is needed of the effects of “immune-attenuation” through early HIV-1 exposure. Funding Wellcome Trust, National Institutes of Health, Medical Research Council

    The biology of sexual development of Plasmodium: the design and implementation of transmission-blocking strategies

    Get PDF
    A meeting to discuss the latest developments in the biology of sexual development of Plasmodium and transmission-control was held April 5-6, 2011, in Bethesda, MD. The meeting was sponsored by the Bill & Melinda Gates Foundation and the National Institutes of Health, National Institute of Allergy and Infectious Diseases (NIH/NIAID) in response to the challenge issued at the Malaria Forum in October 2007 that the malaria community should re-engage with the objective of global eradication. The consequent rebalancing of research priorities has brought to the forefront of the research agenda the essential need to reduce parasite transmission. A key component of any transmission reduction strategy must be methods to attack the parasite as it passes from man to the mosquito (and vice versa). Such methods must be rationally based on a secure understanding of transmission from the molecular-, cellular-, population- to the evolutionary-levels. The meeting represented a first attempt to draw together scientists with expertise in these multiple layers of understanding to discuss the scientific foundations and resources that will be required to provide secure progress toward the design and successful implementation of effective interventions

    Chloroquine Susceptibility and Reversibility in a Plasmodium falciparum Genetic Cross

    Get PDF
    Mutations in the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT), are major determinants of verapamil (VP)-reversible CQ resistance (CQR). In the presence of mutant PfCRT, additional genes contribute to the wide range of CQ susceptibilities observed. It is not known if these genes influence mechanisms of chemosensitization by CQR reversal agents. Using quantitative trait locus (QTL) mapping of progeny clones from the HB3 × Dd2 cross, we show that the P. falciparum multidrug resistance gene 1 (pfmdr1) interacts with the Southeast Asiaderived mutant pfcrt haplotype to modulate CQR levels. A novel chromosome 7 locus is predicted to contribute with the pfcrt and pfmdr1 loci to influence CQR levels. Chemoreversal via a wide range of chemical structures operates through a direct pfcrt-based mechanism. Direct inhibition of parasite growth by these reversal agents is influenced by pfcrt mutations and additional loci. Direct labeling of purified recombinant PfMDR1 protein with a highly specific photoaffinity CQ analogue, and lack of competition for photolabeling by VP, supports our QTL predictions. We find no evidence that pfmdr1 copy number affects CQ response in the progeny, however, inheritance patterns indicate that an allele-specific interaction between pfmdr1 and pfcrt is part of the complex genetic background of CQR

    Comparison of three methods for detection of gametocytes in Melanesian children treated for uncomplicated malaria

    Get PDF
    Background: Gametocytes are the transmission stages of Plasmodium parasites, the causative agents of malaria. As their density in the human host is typically low, they are often undetected by conventional light microscopy. Furthermore, application of RNA-based molecular detection methods for gametocyte detection remains challenging in remote field settings. In the present study, a detailed comparison of three methods, namely light microscopy, magnetic fractionation and reverse transcriptase polymerase chain reaction for detection of Plasmodium falciparum and Plasmodium vivax gametocytes was conducted.Methods. Peripheral blood samples from 70 children aged 0.5 to five years with uncomplicated malaria who were treated with either artemether-lumefantrine or artemisinin-naphthoquine were collected from two health facilities on the north coast of Papua New Guinea. The samples were taken prior to treatment (day 0) and at pre-specified intervals during follow-up. Gametocytes were measured in each sample by three methods: i) light microscopy (LM), ii) quantitative magnetic fractionation (MF) and, iii) reverse transcriptase PCR (RTPCR). Data were analysed using censored linear regression and Bland and Altman techniques.Results: MF and RTPCR were similarly sensitive and specific, and both were superior to LM. Overall, there were approximately 20% gametocyte-positive samples by LM, whereas gametocyte positivity by MF and RTPCR were both more than two-fold this level. In the subset of samples collected prior to treatment, 29% of children were positive by LM, and 85% were gametocyte positive by MF and RTPCR, respectively.Conclusions: The present study represents the first direct comparison of standard LM, MF and RTPCR for gametocyte detection in field isolates. It provides strong evidence that MF is superior to LM and can be used to detect gametocytaemic patients under field conditions with similar sensitivity and specificity as RTPCR

    Drug resistance to sulphadoxine-pyrimethamine in Plasmodium falciparum malaria in Mlimba, Tanzania

    Get PDF
    BACKGROUND: Sulphadoxine-pyrimethamine (SP) has been and is currently used for treatment of uncomplicated Plasmodium falciparum malaria in many African countries. Nevertheless, the response of parasites to SP treatment has shown significant variation between individuals. METHODS: The genes for dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) were used as markers, to investigate parasite resistance to SP in 141 children aged less than 5 years. Parasite DNA was extracted by Chelex method from blood samples collected and preserved on filter papers. Subsequently, polymerase chain reaction (PCR) and restriction fragment length polymorphism (PCR-RFLP) were applied to detect the SP resistance-associated point mutations on dhfr and dhps. Commonly reported point mutations at codons 51, 59, 108 and 164 in the dhfr and codons 437, 540 and 581 in the dhps domains were examined. RESULTS: Children infected with parasites harbouring a range of single to quintuple dhfr/dhps mutations were erratically cured with SP. However, the quintuple dhfr/dhps mutant genotypes were mostly associated with treatment failures. High proportion of SP resistance-associated point mutations was detected in this study but the adequate clinical response (89.4%) observed clinically at day 14 of follow up reflects the role of semi-immunity protection and parasite clearance in the population. CONCLUSION: In monitoring drug resistance to SP, concurrent studies on possible confounding factors pertaining to development of resistance in falciparum malaria should be considered. The SP resistance potential detected in this study, cautions on its useful therapeutic life as an interim first-line drug against malaria in Tanzania and other malaria-endemic countries

    Molecular markers of anti-malarial drug resistance in Lahj Governorate, Yemen: baseline data and implications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ) against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for <it>Plasmodium falciparum </it>resistance against CQ and sulphadoxine/pyrimethamine (SP).</p> <p>Methods</p> <p>Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for <it>P. falciparum </it>chloroquine resistance transporter gene (<it>pfcrt</it>)-76 polymorphisms, mutation <it>pfcrt-</it>S163R and the antifolate resistance-associated mutations dihydrofolate reductase (<it>dhfr</it>)-C59R and dihydropteroate synthase (<it>dhps</it>)-K540E. Direct DNA sequencing of the <it>pfcrt </it>gene from three representative field samples was carried out after DNA amplification of the 13 exons of the <it>pfcrt </it>gene.</p> <p>Results</p> <p>Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant <it>pfcrt </it>T76 was 98% in 112 amplified pre-treatment samples. The presence of <it>pfcrt </it>T76 was poorly predictive of <it>in vivo </it>CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9). The prevalence of <it>dhfr </it>Arg-59 mutation in 99 amplified samples was 5%, while the <it>dhps </it>Glu-540 was not detected in any of 119 amplified samples. Sequencing the <it>pfcrt </it>gene confirmed that Yemeni CQ resistant <it>P. falciparum </it>carry the old world (Asian and African) CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371.</p> <p>Conclusion</p> <p>This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR <it>P. falciparum </it>parasites from Yemen. Mutant <it>pfcrt</it>T76 is highly prevalent but it is a poor predictor of treatment failure in the study population. The prevalence of mutation <it>dhfr</it>Arg59 is suggestive of emerging resistance to SP, which is currently a component of the recommended combination treatment of falciparum malaria in Yemen. More studies on these markers are recommended for surveillance of resistance in the study area.</p

    Optimally timing primaquine treatment to reduce Plasmodium falciparum transmission in low endemicity Thai-Myanmar border populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Effective malaria control has successfully reduced the malaria burden in many countries, but to eliminate malaria, these countries will need to further improve their control efforts. Here, a malaria control programme was critically evaluated in a very low-endemicity Thai-Myanmar border population, where early detection and prompt treatment have substantially reduced, though not ended, <it>Plasmodium falciparum </it>transmission, in part due to carriage of late-maturing gametocytes that remain post-treatment. To counter this effect, the WHO recommends the use of a single oral dose of primaquine along with an effective blood schizonticide. However, while the effectiveness of primaquine as a gametocidal agent is widely documented, the mismatch between primaquine's short half-life, the long-delay for gametocyte maturation and the proper timing of primaquine administration have not been studied.</p> <p>Methods</p> <p>Mathematical models were constructed to simulate 8-year surveillance data, between 1999 and 2006, of seven villages along the Thai-Myanmar border. A simple model was developed to consider primaquine pharmacokinetics and pharmacodynamics, gametocyte carriage, and infectivity.</p> <p>Results</p> <p>In these populations, transmission intensity is very low, so the <it>P. falciparum </it>parasite rate is strongly linked to imported malaria and to the fraction of cases not treated. Given a 3.6-day half-life of gametocyte, the estimated duration of infectiousness would be reduced by 10 days for every 10-fold reduction in initial gametocyte densities. Infectiousness from mature gametocytes would last two to four weeks and sustain some transmission, depending on the initial parasite densities, but the residual mature gametocytes could be eliminated by primaquine. Because of the short half-life of primaquine (approximately eight hours), it was immediately obvious that with early administration (within three days after an acute attack), primaquine would not be present when mature gametocytes emerged eight days after the appearance of asexual blood-stage parasites. A model of optimal timing suggests that primaquine follow-up approximately eight days after a clinical episode could further reduce the duration of infectiousness from two to four weeks down to a few days. The prospects of malaria elimination would be substantially improved by changing the timing of primaquine administration and combining this with effective detection and management of imported malaria cases. The value of using primaquine to reduce residual gametocyte densities and to reduce malaria transmission was considered in the context of a malaria transmission model; the added benefit of the primaquine follow-up treatment would be relatively large only if a high fraction of patients (>95%) are initially treated with schizonticidal agents.</p> <p>Conclusion</p> <p>Mathematical models have previously identified the long duration of <it>P. falciparum </it>asexual blood-stage infections as a critical point in maintaining malaria transmission, but infectiousness can persist for two to four weeks because of residual populations of mature gametocytes. Simulations from new models suggest that, in areas where a large fraction of malaria cases are treated, curing the asexual parasitaemia in a primary infection, and curing mature gametocyte infections with an eight-day follow-up treatment with primaquine have approximately the same proportional effects on reducing the infectious period. Changing the timing of primaquine administration would, in all likelihood, interrupt transmission in this area with very good health systems and with very low endemicity.</p

    A cluster-randomized trial of mass drug administration with a gametocytocidal drug combination to interrupt malaria transmission in a low endemic area in Tanzania

    Get PDF
    Contains fulltext : 96570.pdf (publisher's version ) (Open Access)BACKGROUND: Effective mass drug administration (MDA) with anti-malarial drugs can clear the human infectious reservoir for malaria and thereby interrupt malaria transmission. The likelihood of success of MDA depends on the intensity and seasonality of malaria transmission, the efficacy of the intervention in rapidly clearing all malaria parasite stages and the degree to which symptomatic and asymptomatic parasite carriers participate in the intervention. The impact of MDA with the gametocytocidal drug combination sulphadoxine-pyrimethamine (SP) plus artesunate (AS) plus primaquine (PQ, single dose 0.75 mg/kg) on malaria transmission was determined in an area of very low and seasonal malaria transmission in northern Tanzania. METHODS: In a cluster-randomized trial in four villages in Lower Moshi, Tanzania, eight clusters (1,110 individuals; cluster size 47- 209) were randomized to observed treatment with SP+AS+PQ and eight clusters (2,347 individuals, cluster size 55- 737) to treatment with placebo over three days. Intervention and control clusters were 1 km apart; households that were located between clusters were treated as buffer zones where all individuals received SP+AS+PQ but were not selected for the evaluation. Passive case detection was done for the entire cohort and active case detection in 149 children aged 1-10 year from the intervention arm and 143 from the control arm. Four cross-sectional surveys assessed parasite carriage by microscopy and molecular methods during a five-month follow-up period. RESULTS: The coverage rate in the intervention arm was 93.0% (1,117/1,201). Parasite prevalence by molecular detection methods was 2.2-2.7% prior to the intervention and undetectable during follow-up in both the control and intervention clusters. None of the slides collected during cross-sectional surveys had microscopically detectable parasite densities. Three clinical malaria episodes occurred in the intervention (n = 1) and control clusters (n = 2). CONCLUSIONS: This study illustrates the possibility to achieve high coverage with a three-day intervention but also the difficulty in defining suitable outcome measures to evaluate interventions in areas of very low malaria transmission intensity. The decline in transmission intensity prior to the intervention made it impossible to assess the impact of MDA in the chosen study setting. TRIAL REGISTRATION: ClinicalTrials.gov: NCT00509015
    corecore