35 research outputs found
Low Level of Transmitted HIV Drug Resistance at Two HIV Care Centres in Ghana: A Threshold Survey
Background: As access to antiretroviral therapy (ART) increases, the emergence and transmission of HIV drug resistant strains becomes a major problem. The World Health Organization (WHO) therefore recommends an initial minimum-resource method to signal when transmitted HIV drug resistance (HIVDR) requires action.Objective: This survey sought to generate information on the presence of HIV drug-resistant strains in the locality where Ghana’s ART for HIV was first introduced.Methods: The Ghana HIVDR threshold survey (TS) was conducted and analyzed according to WHO strategy for surveillance of HIVDR in the Eastern Region of Ghana. Sixty (60) plasma specimens were collected from 2007 to 2009 by an unlinked anonymous method from HIV seropositive pregnant women, aged between 15 to24 years, who were with their first pregnancy and ART naive. Genotyping was done as follows; Ribonucleic acid (RNA) was extracted from the samples and the protease (PR) and reverse transcriptase (RT) genes amplified and sequenced. The sequences were then analyzed for HIV drug resistance mutations using Stanford University HIV Drug Resistance Database.Results: Only two individuals were found with major HIVDR mutations: one each in the PR and RT genes. Thus the level of HIVDR in the study population in 2009 was classified as low (< 5%).Conclusion: As at February 2009, transmitted drug resistance was not a serious problem in the Eastern Region of Ghana. However, it is important to continue monitoring tHIVDR in order to understand the dynamics of the evolution of HIV drug resistance in the country
Health Services Utilization, Work Absenteeism and Costs of Pandemic Influenza A (H1N1) 2009 in Spain: A Multicenter-Longitudinal Study
Background: The aim of this study was to estimate healthcare resource utilization, work absenteeism and cost per patient with pandemic influenza (H1N1)2009, from its beginning to March 2010, in Spain. We also estimated the economic impact on healthcare services. Methods and Findings: Longitudinal, descriptive,multicenter study of in- and outpatients with confirmed diagnosis of influenza A (H1N1) in Spain. Temporal distribution of cases was comparable to that in Spain. Information of healthcare and social resources used from one week before admission (inpatient) or index-medical visit (outpatient) until recovery was gathered. Unit cost was imputed to utilization frequency for the monetary valuation of use. Mean cost per patient was calculated. A sensitivity analysis was conducted, and variables correlated with cost per patient were identified. Economic impact on the healthcare system was estimated using healthcare costs per patient and both, the reported number of confirmed and clinical cases in Spain. 172 inpatients and 224 outpatients were included. Less than 10% were over 65 years old and more than 50% had previous comorbidities. 12.8% of inpatients were admitted to the Intensive Care Unit. Mean length of hospital stay of patients not requiring critical care was 5 days (SD =4.4). All working-inpatients and 91.7% working-outpatients went on sick leave. On average, work absenteeism was 30.5 days (SD=20.7) for the first ones and 9 days (SD= 6.3) for the latest. Caregivers of 21.7% of inpatients and 8.5% of outpatients also had work absenteeism during 10.7 and 4.1 days on average respectively. Mean cost was J6,236/inpatient (CI95%=1,384-14,623) and J940/outpatient (CI95% =66-3,064). The healthcare economic burden of patients with confirmed influenza was J144,773,577 (IC95% 13,753,043-383,467,535). More than 86% of expenditures were a result of outpatients" utilization. Conclusion: Cost per H1N1-patient did not defer much from seasonal influenza estimates. Hospitalizations and work absenteeism represented the highest cost per patient
Glucose Depletion in the Airway Surface Liquid Is Essential for Sterility of the Airways
Diabetes mellitus predisposes the host to bacterial infections. Moreover, hyperglycemia has been shown to be an independent risk factor for respiratory infections. The luminal surface of airway epithelia is covered by a thin layer of airway surface liquid (ASL) and is normally sterile despite constant exposure to bacteria. The balance between bacterial growth and killing in the airway determines the outcome of exposure to inhaled or aspirated bacteria: infection or sterility. We hypothesized that restriction of carbon sources –including glucose– in the ASL is required for sterility of the lungs. We found that airway epithelia deplete glucose from the ASL via a novel mechanism involving polarized expression of GLUT-1 and GLUT-10, intracellular glucose phosphorylation, and low relative paracellular glucose permeability in well-differentiated cultures of human airway epithelia and in segments of airway epithelia excised from human tracheas. Moreover, we found that increased glucose concentration in the ASL augments growth of P. aeruginosa in vitro and in the lungs of hyperglycemic ob/ob and db/db mice in vivo. In contrast, hyperglycemia had no effect on intrapulmonary bacterial growth of a P. aeruginosa mutant that is unable to utilize glucose as a carbon source. Our data suggest that depletion of glucose in the airway epithelial surface is a novel mechanism for innate immunity. This mechanism is important for sterility of the airways and has implications in hyperglycemia and conditions that result in disruption of the epithelial barrier in the lung
The synthetic bacterial lipopeptide Pam3CSK4 modulates respiratory syncytial virus infection independent of TLR activation
Respiratory syncytial virus (RSV) is an important cause of acute respiratory disease in infants, immunocompromised subjects and the elderly. However, it is unclear why most primary RSV infections are associated with relatively mild symptoms, whereas some result in severe lower respiratory tract infections and bronchiolitis. Since RSV hospitalization has been associated with respiratory bacterial co-infections, we have tested if bacterial Toll-like receptor (TLR) agonists influence RSVA2- GFP infection in human primary cells or cell lines. The synthetic bacterial lipopeptide Pam3-Cys-Ser-Lys4 (Pam3CSK4), the prototype ligand for the heterodimeric TLR1/TLR2 complex, enhanced RSV infection in primary epithelial, myeloid and lymphoid cells. Surprisingly, enhancement was optimal when lipopeptides and virus were added simultaneously, whereas addition of Pam3CSK4 immediately after infection had no effect. We have identified two structurally related lipopeptides without TLR-signaling capacity that also modulate RSV infection, whereas Pam3CSK4-reminiscent TLR1/2 agonists did not, and conclude that modulation of infection is independent of TLR activation. A similar TLR-independent enhancement of infection could also be demonstrated for wild-type RSV strains, and for HIV-1, measles virus and human metapneumovirus. We show that the effect of Pam3CSK4 is primarily mediated by enhanced binding of RSV to its target cells. The Npalmitoylated cystein
International links between Streptococcus pneumoniae vaccine serotype 4 sequence type (ST) 801 in Northern European shipyard outbreaks of invasive pneumococcal disease
Background: Pneumococcal disease outbreaks of vaccine preventable serotype 4 sequence type (ST)801 in shipyards have been reported in several countries. We aimed to use genomics to establish any international links between them. Methods: Sequence data from ST801-related outbreak isolates from Norway (n = 17), Finland (n = 11) and Northern Ireland (n = 2) were combined with invasive pneumococcal disease surveillance from the respective countries, and ST801-related genomes from an international collection (n = 41 of > 40,000), totalling 106 genomes. Raw data were mapped and recombination excluded before phylogenetic dating. Results: Outbreak isolates were relatively diverse, with up to 100 SNPs (single nucleotide polymorphisms) and a common ancestor estimated around the year 2000. However, 19 Norwegian and Finnish isolates were nearly indistinguishable (0–2 SNPs) with the common ancestor dated around 2017. Conclusion: The total diversity of ST801 within the outbreaks could not be explained by recent transmission alone, suggesting that harsh environmental and associated living conditions reported in the shipyards may facilitate invasion of colonising pneumococci. However, near identical strains in the Norwegian and Finnish outbreaks does suggest that transmission between international shipyards also contributed to those outbreaks. This indicates the need for improved preventative measures in this working population including pneumococcal vaccination
Therapeutic targeting of CK2 in acute and chronic leukemias
Phosphorylation can regulate almost every property of a protein and is involved in all fundamental cellular processes. Thus, proper regulation of phosphorylation events is critical to the homeostatic functions of cell signaling. Indeed, deregulation of signaling pathways underlies many human diseases, including cancer.[1] The importance of phosphorylation makes protein kinases and phosphatases promising therapeutic targets for a wide variety of disorders.[2] CK2, formerly known as casein kinase II, was discovered in 1954, [3] although only recently, and especially over the last two decades, it has become one of the most studied protein kinases, due to its ubiquity, pleiotropy and constitutive activity. In particular, appreciation of its pleiotropy has completely changed our vision of CK2 biology, from an ordinary cell homeostasis-maintaining enzyme to a master kinase potentially implicated in many human physiological and pathological events. CK2 is responsible for about 25% of the phosphoproteome,[4] as it catalyzes the phosphorylation of >300 substrates.[5] This partly explains the CK2 interconnected roles that underlie its involvement in many signaling pathways. However, CK2 prevalent roles are promotion of cell growth and suppression of apoptosis. Accordingly, several lines of evidence support the notion that CK2 is a key player in the pathogenesis of cancer. High levels of CK2 transcript and protein expression, as well as increased kinase activity are associated with the pathological functions of CK2 in a number of neoplasias.[6] It was only over the last decade, after extensive analyses in solid tumors, that basic and translational studies have provided evidence for a pivotal role of CK2 in driving the growth of different blood cancers as well, although the first report demonstrating increased CK2 expression in acute myelogenous leukemia (AML) dates back to 1985.[7] Since then, CK2 overexpression/activity has been demonstrated in other hematological malignancies, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL) and chronic myelogenous leukemia (CML). [8] With the notable exceptions of CML and pediatric ALL, many patients with leukemias still have a poor outcome, despite the development of protocols with optimized chemotherapy combinations. Insufficient response to first-line therapy and unsalvageable relapses present major therapeutic challenges. Moreover, chemotherapy, even if successful, could have deleterious long-term biological and psychological effects, especially in children.[9] Furthermore, CML patients can develop resistance to tyrosine kinase inhibitors (TKIs), while both primary chemoresistant and relapsed pediatric ALL cases still remain an unresolved issue.[9
Analysis and characterization of heparin impurities
This review discusses recent developments in analytical methods available for the sensitive separation, detection and structural characterization of heparin contaminants. The adulteration of raw heparin with oversulfated chondroitin sulfate (OSCS) in 2007–2008 spawned a global crisis resulting in extensive revisions to the pharmacopeia monographs on heparin and prompting the FDA to recommend the development of additional physicochemical methods for the analysis of heparin purity. The analytical chemistry community quickly responded to this challenge, developing a wide variety of innovative approaches, several of which are reported in this special issue. This review provides an overview of methods of heparin isolation and digestion, discusses known heparin contaminants, including OSCS, and summarizes recent publications on heparin impurity analysis using sensors, near-IR, Raman, and NMR spectroscopy, as well as electrophoretic and chromatographic separations