1,274 research outputs found

    Estimating extreme flood events:Assumptions, uncertainty and error

    Get PDF
    Hydrological extremes are amongst the most devastating forms of natural disasters both in terms of lives lost and socio-economic impacts. There is consequently an imperative to robustly estimate the frequency and magnitude of hydrological extremes. Traditionally, engineers have employed purely statistical approaches to the estimation of flood risk. For example, for an observed hydrological timeseries, each annual maximum flood is extracted and a frequency distribution is fit to these data. The fitted distribution is then extrapolated to provide an estimate of the required design risk (i.e. the 1 % Annual Exceedance Probability – AEP). Such traditional approaches are overly simplistic in that risk is implicitly assumed to be static, in other words, that climatological processes are assumed to be randomly distributed in time. In this study, flood risk estimates are evaluated with regards to traditional statistical approaches as well as Pacific Decadal Oscillation (PDO)/El Niño-Southern Oscillation (ENSO) conditional estimates for a flood-prone catchment in eastern Australia. A paleo-reconstruction of pre-instrumental PDO/ENSO occurrence is then employed to estimate uncertainty associated with the estimation of the 1 % AEP flood. The results indicate a significant underestimation of the uncertainty associated with extreme flood events when employing the traditional engineering estimates

    An integrated approach to modelling the fluid-structure interaction of a collapsible tube

    Get PDF
    The well known collapsible tube experiment was conducted to obtain flow, pressure and materials property data for steady state conditions. These were then used as the boundary conditions for a fully coupled fluid-structure interaction (FSI) model using a propriety computer code, LS-DYNA. The shape profiles for the tube were also recorded. In order to obtain similar collapse modes to the experiment, it was necessary to model the tube flat, and then inflate it into a circular profile, leaving residual stresses in the walls. The profile shape then agreed well with the experimental ones. Two departures from the physical properties were required to reduce computer time to an acceptable level. One of these was the lowering of the speed of sound by two orders of magnitude which, due to the low velocities involved, still left the mach number below 0.2. The other was to increase the thickness of the tube to prevent the numerical collapse of elements. A compensation for this was made by lowering the Young's modulus for the tube material. Overall the results are qualitatively good. They give an indication of the power of the current FSI algorithms and the need to combine experiment and computer models in order to maximise the information that can be extracted both in terms of quantity and quality

    Gravitons in One-Loop Quantum Cosmology: Correspondence Between Covariant and Non-Covariant Formalisms

    Get PDF
    The discrepancy between the results of covariant and non-covariant one-loop calculations for higher-spin fields in quantum cosmology is analyzed. A detailed mode-by-mode study of perturbative quantum gravity about a flat Euclidean background bounded by two concentric 3-spheres, including non-physical degrees of freedom and ghost modes, leads to one-loop amplitudes in agreement with the covariant Schwinger-DeWitt method. This calculation provides the generalization of a previous analysis of fermionic fields and electromagnetic fields at one-loop about flat Euclidean backgrounds admitting a well-defined 3+1 decomposition.Comment: 29 pages, latex, recently appearing in Physical Review D, volume 50, pages 6329-6337, November 1994. The authors apologize for the delay in circulating the paper, due to technical problems now fixe

    A Non-Singular One-Loop Wave Function of the Universe From a New Eigenvalue Asymptotics in Quantum Gravity

    Full text link
    Recent work on Euclidean quantum gravity on the four-ball has proved regularity at the origin of the generalized zeta-function built from eigenvalues for metric and ghost modes, when diffeomorphism-invariant boundary conditions are imposed in the de Donder gauge. The hardest part of the analysis involves one of the four sectors for scalar-type perturbations, the eigenvalues of which are obtained by squaring up roots of a linear combination of Bessel functions of integer adjacent orders, with a coefficient of linear combination depending on the unknown roots. This paper obtains, first, approximate analytic formulae for such roots for all values of the order of Bessel functions. For this purpose, both the descending series for Bessel functions and their uniform asymptotic expansion at large order are used. The resulting generalized zeta-function is also built, and another check of regularity at the origin is obtained. For the first time in the literature on quantum gravity on manifolds with boundary, a vanishing one-loop wave function of the Universe is found in the limit of small three-geometry, which suggests a quantum avoidance of the cosmological singularity driven by full diffeomorphism invariance of the boundary-value problem for one-loop quantum theory.Comment: 21 Pages, Latex and .eps files with JHEP3 style. The discussion in Section 5 has been improved, and Ref. 26 has been adde

    Exponential martingales and changes of measure for counting processes

    Full text link
    We give sufficient criteria for the Dol\'eans-Dade exponential of a stochastic integral with respect to a counting process local martingale to be a true martingale. The criteria are adapted particularly to the case of counting processes and are sufficiently weak to be useful and verifiable, as we illustrate by several examples. In particular, the criteria allow for the construction of for example nonexplosive Hawkes processes as well as counting processes with stochastic intensities depending on diffusion processes

    Black Holes from Nucleating Strings

    Full text link
    We evaluate the probability that a loop of string that has spontaneously nucleated during inflation will form a black hole upon collapse, after the end of inflation. We then use the observational bounds on the density of primordial black holes to put constraints on the parameters of the model. Other constraints from the distortions of the microwave background and emission of gravitational radiation by the loops are considered. Also, observational constraints on domain wall nucleation and monopole pair production during inflation are briefly discussed.Comment: 27 pages, tutp-92-

    Predictions from Quantum Cosmology

    Get PDF
    The world view suggested by quantum cosmology is that inflating universes with all possible values of the fundamental constants are spontaneously created out of nothing. I explore the consequences of the assumption that we are a `typical' civilization living in this metauniverse. The conclusions include inflation with an extremely flat potential and low thermalization temperature, structure formation by topological defects, and an appreciable cosmological constant.Comment: (revised version), 15 page

    The perseverance of Pacioli's goods inventory accounting system

    Get PDF
    This paper details sources of the 'undoubtedly strange' (Yamey, 1994a, p.119) system of goods inventory records described in Pacioli’s 1494 bookkeeping treatise and traces the longevity and widespread use of this early perpetual inventory recording (EPIR) system in English language texts. By doing so and contrasting this system with the bookkeeping treatment of modern texts, it is shown that the EPIR system persisted as the dominant form of goods inventory accounting for between 400 and 500 years and that the reasons for its demise are worthy of further consideration and research

    Nonassociative geometry: Towards discrete structure of spacetime

    Get PDF
    In the framework of nonassociative geometry (hep-th/0003238) a unified description of continuum and discrete spacetime is proposed. In our approach at the Planck scales the spacetime is described as a so-called "diodular discrete structure" which at large spacetime scales `looks like' a differentiable manifold. After a brief review of foundations of nonassociative geometry,we discuss the nonassociative smooth and discrete de Sitter spacetimes.Comment: RevTex file, 5 pages, typos correcte
    corecore