16 research outputs found

    The UDF05 follow-up of the Hubble Ultra Deep Field. I. The faint-end slope of the Lyman Break Galaxy Population at z ~ 5

    Get PDF
    We present the UDF05 HST program, which consists of three disjoint fields—NICP12, NICP34, plus the HUDF—with deep ACS (F606W, F775W, and F850LP) and NICMOS (F110W and F160W) imaging. Here we use the ACS data for the NICP12 and HUDF fields to implement a (V − i) − (i − z) selection criterion that allows us to identify a sample of 101 (133) z ~ 5 Lyman break galaxies (LBGs) down to z850 = 28.5 (29.25) mag in NICP12 (HUDF). We construct the rest-frame 1400 Å LBG luminosity function (LF) over the range M1400 = [ − 21.4, − 17.1] , i.e. down to ~0.04L* at z ~ 5, and use Subaru Deep Field results (Yoshida et al. 2006) to constrain our LF at the bright end (M1400 ≥ − 22.2). We show that (1) different assumptions regarding the LBG SED distribution, dust properties, and intergalactic absorption result in a 25% variation in the number density of LBGs at z ~ 5; (2) under consistent assumptions for dust properties and intergalactic absorption, the HUDF is ~30% underdense in z ~ 5 LBGs relative to the NICP12 field, a variation which is well explained by cosmic variance; and (3) the faint-end slope of the LF does not depend on the input parameters, and has a value of α ~ − 1.6, similar to the faint-end slope of the LF of z ~ 3 and z ~ 6 LBGs. Our study therefore supports no variation in the faint end of the LBG LF over the whole redshift range z ~ 3 to z ~ 6. Based on a comparison with semianalytical models, we speculate that the z ~ 5 LBGs might have a top-heavy IMF

    (Sub)mm Interferometry Applications in Star Formation Research

    Full text link
    This contribution gives an overview about various applications of (sub)mm interferometry in star formation research. The topics covered are molecular outflows, accretion disks, fragmentation and chemical properties of low- and high-mass star-forming regions. A short outlook on the capabilities of ALMA is given as well.Comment: 20 pages, 7 figures, in proceedings to "2nd European School on Jets from Young Star: High Angular Resolution Observations". A high-resolution version of the paper can be found at http://www.mpia.de/homes/beuther/papers.htm

    Observational diagnostics of gas in protoplanetary disks

    Full text link
    Protoplanetary disks are composed primarily of gas (99% of the mass). Nevertheless, relatively few observational constraints exist for the gas in disks. In this review, I discuss several observational diagnostics in the UV, optical, near-IR, mid-IR, and (sub)-mm wavelengths that have been employed to study the gas in the disks of young stellar objects. I concentrate in diagnostics that probe the inner 20 AU of the disk, the region where planets are expected to form. I discuss the potential and limitations of each gas tracer and present prospects for future research.Comment: Review written for the proceedings of the conference "Origin and Evolution of Planets 2008", Ascona, Switzerland, June 29 - July 4, 2008. Date manuscript: October 2008. 17 Pages, 6 graphics, 134 reference

    SPACE: the spectroscopic all-sky cosmic explorer

    Get PDF
    We describe the scientific motivations, the mission concept and the instrumentation of SPACE, a class-M mission proposed for concept study at the first call of the ESA Cosmic-Vision 2015–2025 planning cycle. SPACE aims to produce the largest three-dimensional evolutionary map of the Universe over the past 10 billion years by taking near-IR spectra and measuring redshifts for more than half a billion galaxies at 0 < z < 2 down to AB ∼ 23 over 3π sr of the sky. In addition, SPACE will also target a smaller sky field, performing a deep spectroscopic survey of millions of galaxies to AB ∼ 26 and at 2 < z < 10+. These goals are unreachable with ground-based observations due to the ≈500 times higher sky background (see e.g. Aldering, LBNL report number LBNL-51157, 2001). To achieve the main science objectives, SPACE will use a 1.5 m diameter Ritchey- Chretien telescope equipped with a set of arrays of Digital Micro-mirror Devices covering a total field of view of 0.4 deg2, and will perform large-multiplexing multi-object spectroscopy (e.g. ≈6000 targets per pointing) at a spectral resolution of R∼400 as well as diffraction-limited imaging with continuous coverage from 0.8 to 1.8 μm. Owing to the depth, redshift range, volume coverage and quality of its spectra, SPACE will reveal with unique sensitivity most of the fundamental cosmological signatures, including the power spectrum of density fluctuations and its turnover. SPACE will also place high accuracy constraints on the dark energy equation of state parameter and its evolution by measuring the baryonic acoustic oscillations imprinted when matter and radiation decoupled, the distanceluminosity relation of cosmological supernovae, the evolution of the cosmic expansion rate, the growth rate of cosmic large-scale structure, and high-z galaxy clusters. The datasets from the SPACE mission will represent a long lasting legacy for the whole astronomical community whose data will be mined for many years to come

    Extrasolar Planets: A Review of Current Observations and Theory

    No full text

    Filaments and Pre-stellar Sources in the Orion A L 1641 Molecular Clouds

    No full text
    The Herschel Gould Belt Survey far-IR maps of the Orion L 1641 molecular clouds have revealed a wealth of interconnected filaments and dense sources in the region. We report here the first estimation of the total mass of the L 1641 clouds as derived from dust (3. 7 × 104 M☉). We further present our initial analysis of the physical properties of these dense sources as a result of their immediate environment. We have extracted a robust and statistically significant sample of 321 pre-stellar sources with a mass distribution that spans a range of 0.1-20 M☉. We show that there are two mass range distributions that depend on the location of the dense cores on or off the identified filaments. <P /

    Near infrared imaging spectroscopy of IRAS FSC 10214+4724: Evidence for a starburst region around an AGN at z=2.3

    No full text
    We report 1'' imaging spectroscopy of the 1.95 to 2.4#mu#m wavelength region in the z=2.284 galaxy IRAS FSC10214+4724. We find that the rest-frame H#alpha# and [NII] emission have different spatial extents. We also detect broad (#DELTA##upsilon#_F_W_Z_P #approx# 3500 km/s) H#alpha# emission. F10214 is a very luminous gravitationally lensed galaxy which intrinsically contains both a type 1 active galactic nucleus, as well as a more extended star forming disk. The AGN and circum-nuclear star formation both contribute significantly to the total luminosity of #approx# 10&quot;1&quot;3L_sun. (orig.)Available from TIB Hannover: RN 9303(354) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore