17 research outputs found

    Probing Lorentz Invariance at EeV Energy

    Full text link
    Pierre Auger experiment has detected at least a couple of ray events above energy 60 EeV from the direction of the radio-galaxy Centaurus A. Assuming those events are from Centaurus A, we have calculated the number of neutral cosmic ray events from this source for small values of the degree of violation in Lorentz invariance. Our results show that a comparison of our calculated numbers of events with the observed number of events at EeV energy from the direction of the source can probe extremely low value of the degree of this violation.Comment: 8 pages,4 figure

    UHECR as Decay Products of Heavy Relics? The Lifetime Problem

    Full text link
    The essential features underlying the top-down scenarii for UHECR are discussed, namely, the stability (or lifetime) imposed to the heavy objects (particles) whatever they be: topological and non-topological solitons, X-particles, cosmic defects, microscopic black-holes, fundamental strings. We provide an unified formula for the quantum decay rate of all these objects as well as the particle decays in the standard model. The key point in the top-down scenarii is the necessity to adjust the lifetime of the heavy object to the age of the universe. This ad-hoc requirement needs a very high dimensional operator to govern its decay and/or an extremely small coupling constant. The natural lifetimes of such heavy objects are, however, microscopic times associated to the GUT energy scale (sim 10^{-28} sec. or shorter). It is at this energy scale (by the end of inflation) where they could have been abundantly formed in the early universe and it seems natural that they decayed shortly after being formed.Comment: 11 pages, LaTex, no figures, updated versio

    Ultrahigh energy cosmic rays from collisional annihilation revisited

    Full text link
    We re-examine collisional annihilation of superheavy dark matter particles in dark matter density spikes in the galactic halo as a possible source of ultrahigh energy cosmic rays. We estimate the possible flux in a way that does not depend on detailed assumptions about the density profiles of dark matter clumps. The result confirms that collisional annihilation is compatible with annihilation cross sections below the unitarity bounds for superheavy dark matter if the particles can form dense cores in dark matter substructure, and it provides estimates for core sizes and densities. The ensuing clumpy source distribution in the galactic halo will be tested within a few years of operation of the Pierre Auger observatory.Comment: 9 pages, new section included, introduction shortened, to appear in Can. J. Phy

    Loop Quantum Gravity and Ultra High Energy Cosmic Rays

    Full text link
    There are two main sets of data for the observed spectrum of ultra high energy cosmic rays (those cosmic rays with energies greater than 4×1018\sim 4 \times 10^{18} eV), the High Resolution Fly's Eye (HiRes) collaboration group observations, which seem to be consistent with the predicted theoretical spectrum (and therefore with the theoretical limit known as the Greisen-Zatsepin-Kuzmin cutoff), and the observations from the Akeno Giant Air Shower Array (AGASA) collaboration group, which reveal an abundant flux of incoming particles with energies above 1×10201 \times 10^{20} eV violating the Greisen-Zatsepin-Kuzmin cutoff. As an explanation of this anomaly it has been suggested that quantum-gravitational effects may be playing a decisive role in the propagation of ultra high energy cosmic rays. In this article we take the loop quantum gravity approach. We shall provide some techniques to establish and analyze new constraints on the loop quantum gravity parameters arising from both sets of data, HiRes and AGASA . We shall also study their effects on the predicted spectrum for ultra high energy cosmic rays. As a result we will state the possibility of reconciling the AGASA observations.Comment: 18 pages, latex, 4 figure
    corecore