37 research outputs found
Search for a Lorentz invariance violation in atmospheric neutrino oscillations using MACRO data
The energy spectrum of neutrino-induced upward-going muons in MACRO was
analysed in terms of special relativity principles violating effects, keeping
standard mass-induced atmospheric neutrino oscillations as the dominant source
of nu_mu nu_tau transitions. The data disfavour these exotic possibilities
even at a sub-dominant level, and stringent 90% C.L. limits are placed on the
Lorentz invariance violation parameters. These limits can also be
re-interpreted as upper bounds on the parameters describing violation of the
Equivalence Principle.Comment: 8 pages, 5 EPS figures, uses article.sty. Invited talk at C2CR 2005,
From Colliders to Cosmic Rays, Prague, Czech Republic, 7-13 September 200
Has the nonlinear Meissner effect been observed?
We examine recent high-precision experimental data on the magnetic field,
, dependence of the penetration depth in
(YBCO) for several field directions in the
plane. In a new theoretical analysis that incorporates the effects of
orthorhombic symmetry, we show that the data at sufficiently high magnetic
fields and low temperatures are in quantitative agreement with the theoretical
predictions of the nonlinear Meissner effect.Comment: 4 text pages plus 3 postscript figure
Discriminating among Earth composition models using geo-antineutrinos
It has been estimated that the entire Earth generates heat corresponding to
about 40 TW (equivalent to 10,000 nuclear power plants) which is considered to
originate mainly from the radioactive decay of elements like U, Th and K,
deposited in the crust and mantle of the Earth. Radioactivity of these elements
produce not only heat but also antineutrinos (called geo-antineutrinos) which
can be observed by terrestrial detectors. We investigate the possibility of
discriminating among Earth composition models predicting different total
radiogenic heat generation, by observing such geo-antineutrinos at Kamioka and
Gran Sasso, assuming KamLAND and Borexino (type) detectors, respectively, at
these places. By simulating the future geo-antineutrino data as well as reactor
antineutrino background contributions, we try to establish to which extent we
can discriminate among Earth composition models for given exposures (in units
of kt yr) at these two sites on our planet. We use also information on
neutrino mixing parameters coming from solar neutrino data as well as KamLAND
reactor antineutrino data, in order to estimate the number of geo-antineutrino
induced events.Comment: 24 pages, 10 figures, final version to appear in JHE
Extrinsic CPT Violation in Neutrino Oscillations in Matter
We investigate matter-induced (or extrinsic) CPT violation effects in
neutrino oscillations in matter. Especially, we present approximate analytical
formulas for the CPT-violating probability differences for three flavor
neutrino oscillations in matter with an arbitrary matter density profile. Note
that we assume that the CPT invariance theorem holds, which means that the CPT
violation effects arise entirely because of the presence of matter. As special
cases of matter density profiles, we consider constant and step-function matter
density profiles, which are relevant for neutrino oscillation physics in
accelerator and reactor long baseline experiments as well as neutrino
factories. Finally, the implications of extrinsic CPT violation on neutrino
oscillations in matter for several past, present, and future long baseline
experiments are estimated.Comment: 47 pages, 7 figures, RevTeX4. Final version to be published in Phys.
Rev.
Weak localization of disordered quasiparticles in the mixed superconducting state
Starting from a random matrix model, we construct the low-energy effective
field theory for the noninteracting gas of quasiparticles of a disordered
superconductor in the mixed state. The theory is a nonlinear sigma model, with
the order parameter field being a supermatrix whose form is determined solely
on symmetry grounds. The weak localization correction to the field-axis thermal
conductivity is computed for a dilute array of s-wave vortices near the lower
critical field H_c1. We propose that weak localization effects, cut off at low
temperatures by the Zeeman splitting, are responsible for the field dependence
of the thermal conductivity seen in recent high-T_c experiments by Aubin et al.Comment: RevTex, 8 pages, 1 eps figure, typos correcte
What can we learn from neutrinoless double beta decay experiments?
We assess how well next generation neutrinoless double beta decay and normal
neutrino beta decay experiments can answer four fundamental questions. 1) If
neutrinoless double beta decay searches do not detect a signal, and if the
spectrum is known to be inverted hierarchy, can we conclude that neutrinos are
Dirac particles? 2) If neutrinoless double beta decay searches are negative and
a next generation ordinary beta decay experiment detects the neutrino mass
scale, can we conclude that neutrinos are Dirac particles? 3) If neutrinoless
double beta decay is observed with a large neutrino mass element, what is the
total mass in neutrinos? 4) If neutrinoless double beta decay is observed but
next generation beta decay searches for a neutrino mass only set a mass upper
limit, can we establish whether the mass hierarchy is normal or inverted? We
base our answers on the expected performance of next generation neutrinoless
double beta decay experiments and on simulations of the accuracy of
calculations of nuclear matrix elements.Comment: Added reference
Neutrino-Deuteron Scattering in Effective Field Theory at Next-to-Next-to Leading Order
We study the four channels associated with neutrino-deuteron breakup
reactions at next-to-next to leading order in effective field theory. We find
that the total cross-section is indeed converging for neutrino energies up to
20 MeV, and thus our calculations can provide constraints on theoretical
uncertainties for the Sudbury Neutrino Observatory. We stress the importance of
a direct experimental measurement to high precision in at least one channel, in
order to fix an axial two-body counterterm.Comment: 32 pages, 14 figures (eps
High scale mixing unification and large neutrino mixing angles
Starting with the hypothesis that quark and lepton mixings are identical at
or near the GUT scale, we show that the large solar and atmospheric neutrino
mixing angles together with the small reactor angle can be understood
purely as a result of renormalization group evolution. The only requirements
are that the three neutrinos must be quasi degenerate in mass and have same CP
parity. It predicts that the common Majorana mass for the neutrinos must be
larger than 0.1 eV making the idea testable in the currently planned or ongoing
experiments searching for neutrinoless-double-beta decay.Comment: 10 pages, eight figure, two tables; new material added; results
remain unchange
Impact of CP phases on neutrinoless double beta decay
We highlight in a model independent way the dependence of the effective
Majorana mass parameter, relevant for neutrinoless double beta decay, on the CP
phases of the PMNS matrix, using the most recent neutrino data including the
cosmological WMAP measurement. We perform our analysis with three active
neutrino flavours in the context of three kinds of mass spectra:
quasi-degenerate, normal hierarchical and inverted hierarchical. If a
neutrinoless double beta decay experiment records a positive signal, then
assuming that Majorana masses of light neutrinos are responsible for it, we
show how it might be possible to discriminate between the three kinds of
spectra.Comment: 10 pages, latex, 9 eps figs, version to appear in Phys Rev
Gamma-Ray Bursts: The Underlying Model
A pedagogical derivation is presented of the ``fireball'' model of gamma-ray
bursts, according to which the observable effects are due to the dissipation of
the kinetic energy of a relativistically expanding wind, a ``fireball.'' The
main open questions are emphasized, and key afterglow observations, that
provide support for this model, are briefly discussed. The relativistic outflow
is, most likely, driven by the accretion of a fraction of a solar mass onto a
newly born (few) solar mass black hole. The observed radiation is produced once
the plasma has expanded to a scale much larger than that of the underlying
``engine,'' and is therefore largely independent of the details of the
progenitor, whose gravitational collapse leads to fireball formation. Several
progenitor scenarios, and the prospects for discrimination among them using
future observations, are discussed. The production in gamma- ray burst
fireballs of high energy protons and neutrinos, and the implications of burst
neutrino detection by kilometer-scale telescopes under construction, are
briefly discussed.Comment: In "Supernovae and Gamma Ray Bursters", ed. K. W. Weiler, Lecture
Notes in Physics, Springer-Verlag (in press); 26 pages, 2 figure
