49 research outputs found

    Dynamic properties and avalanche noise analysis of 4H-SiC over wz-GaN based IMPATTs at mm-wave window frequency

    No full text
    The mm-wave as well as noise properties of IMPATT diodes for the D-band are efficiently determined, with 4H-SiC and wurtzite type GaN as base materials, using advanced computer simulation techniques developed by the authors. The breakdown voltage (180 V) and efficiency (14.7%) is higher in case of 4H-SiC as compared to wz GaN based diode having the breakdown voltage (153 V) and efficiency (13.7%). The study indicates that 4H-SiC IMPATT diode is capable of generating high RF power density of about 8.383×10¹⁰ W/m² as compared to GaN IMPATT diode that is capable to develop the power density 6.847×10¹⁰ W/m² for the same frequency of operation. It is also observed that wz-GaN exhibits better noise behavior 7.42×10⁻¹⁵ V²·s than SiC (5.16×10⁻¹⁵ V² ·s) for IMPATT operation at 140 GHz. A tradeoff between the power output and noise from the device reveals that wz-GaN would be a suitable base material for high power application of IMPATT diode with moderate noise

    Radiatively Induced Neutrino Masses and Large Higgs-Neutrino Couplings in the Standard Model with Majorana Fields

    Get PDF
    The Higgs sector of the Standard Model with one right-handed neutrino per family is systematically analyzed. In a model with intergenerational independent mixings between families, we can account for very light neutrinos acquiring Majorana masses radiatively at the first electroweak loop level. We also find that in such a scenario the Higgs coupling to the light-heavy neutrinos and to the heavy-heavy ones may be remarkably enhanced with significant implications for the production of these heavy neutrinos at high energy colliders.Comment: Making the text of an old paper electronically availabl

    Heavy quark production via leptoquarks at a neutrino factory

    Full text link
    The proposed neutrino factory (NF) based on a muon storage ring (MSR) is an ideal place to look for heavy quark production via neutral current (NC) and charged current (CC) interactions. In this article, we address the issue of contribution coming from mediating leptoquarks (LQ) in νμ(νˉe)N\nu_\mu (\bar\nu_e)-{\rm N} interactions leading to the production of b(bˉ)b(\bar b) at a MSR and investigate the region where LQ interactions are significant in the near-site experiments.Comment: 12 pages latex, 10 ps figures, uses axocolour.sty, Slightly revised version to appear in PR

    Quark and Lepton Mass Matrices in the SO(10) Grand Unified Theory with Generation Flipping

    Full text link
    We investigate the SO(10) grand unified model with generation flipping. The model contains one extra matter multiplet ψ(10)\psi(10) and it mixes with the usual matter multiplets ψi(16)\psi_i(16) when the SO(10) is broken down to SU(5). We find the parameter region of the model in which the observed quark masses and mixings are well reproduced. The resulting parameter region is consistent with the observation that only ψi(16)\psi_i(16) have a source of hierarchies and indicates that the mixing between second and third generations tends to be large in the lepton sector, which is consistent with the observed maximal mixing of the atmospheric neutrino oscillation. We also show that the model can accommodate MSW and vacuum oscillation solutions to the solar neutrino deficit depending on the form of the Majorana mass matrix for the right-handed neutrinos.Comment: 28 pages, Late

    Yukawa coupling unification and non-universal gaugino mediation of supersymmetry breaking

    Full text link
    The requirement of Yukawa coupling unification highly constrains the SUSY parameter space. In several SUSY breaking scenarios it is hard to reconcile Yukawa coupling unification with experimental constraints from B(b->s gamma) and the muon anomalous magnetic moment a_mu. We show that b-tau or even t-b-tau Yukawa unification can be satisfied simultaneously with b->s gamma and a_mu in the non-universal gaugino mediation scenario. Non-universal gaugino masses naturally appear in higher dimensional grand unified models in which gauge symmetry is broken by orbifold compactification. Relations between SUSY contributions to fermion masses, b->s gamma and a_mu which are typical for models with universal gaugino masses are relaxed. Consequently, these phenomenological constraints can be satisfied simultaneously with a relatively light SUSY spectrum, compared to models with universal gaugino masses.Comment: 20 pages, 8 figures. References added. A copy of the paper with better resolution figures can be found at http://www.hep.fsu.edu/~balazs/Physics/Papers/2003

    Reexamining nonstandard interaction effects on supernova neutrino flavor oscillations

    Get PDF
    Several extensions of the standard electroweak model allow new four-fermion interactions (nu_a nu_b * ff) with strength eps_ab*G_F, where (a,b) are flavor indices. We revisit their effects on flavor oscillations of massive (anti)neutrinos in supernovae, in order to achieve, in the region above the protoneutron star, an analytical treatment valid for generic values of the neutrino mixing angles (omega,phi,psi)=(theta_12,theta_13,theta_23). Assuming that eps_ab<<1, we find that the leading effects on the flavor transitions occurring at high (H) and low (L) density along the supernova matter profile can be simply embedded through the replacements phi-->phi+eps_H and omega-->omega+eps_L, respectively, where eps_H and eps_L are specific linear combinations of the eps_ab's. Similar replacements hold for eventual oscillations in the Earth matter. From a phenomenological point of view, the most relevant consequence is a possible uncontrolled bias (phi-->phi+eps_H) in the value of the mixing angle phi inferred by inversion of supernova neutrino data. Such a drawback, however, does not preclude the discrimination of the neutrino mass spectrum hierarchy (direct or inverse) through supernova neutrino oscillations.Comment: Text clarified, one figure added. To appear in PR

    Neutrino masses: From fantasy to facts

    Get PDF
    Theory suggests the existence of neutrino masses, but little more. Facts are coming close to reveal our fantasy: solar and atmospheric neutrino data strongly indicate the need for neutrino conversions, while LSND provides an intriguing hint. The simplest ways to reconcile these data in terms of neutrino oscillations invoke a light sterile neutrino in addition to the three active ones. Out of the four neutrinos, two are maximally-mixed and lie at the LSND scale, while the others are at the solar mass scale. These schemes can be distinguished at neutral-current-sensitive solar & atmospheric neutrino experiments. I discuss the simplest theoretical scenarios, where the lightness of the sterile neutrino, the nearly maximal atmospheric neutrino mixing, and the generation of Δm2\Delta {m^2}_\odot & Δm2atm\Delta {m^2}_{atm} all follow naturally from the assumed lepton-number symmetry and its breaking. Although the most likely interpretation of the present data is in terms of neutrino-mass-induced oscillations, one still has room for alternative explanations, such as flavour changing neutrino interactions, with no need for neutrino mass or mixing. Such flavour violating transitions arise in theories with strictly massless neutrinos, and may lead to other sizeable flavour non-conservation effects, such as μe+γ\mu \to e + \gamma, μe\mu-e conversion in nuclei, unaccompanied by neutrino-less double beta decay.Comment: 33 pages, latex, 16 figures. Invited Talk at Ioannina Conference, Symmetries in Intermediate High Energy Physics and its Applications, Oct. 1998, to be published by Springer Tracts in Modern Physics. Festschrift in Honour of John Vergados' 60th Birthda

    Mushy Zone Morphology During Directional Solidification of Pb-5.8 Wt Pct Sb Alloy

    Get PDF
    The Pb-5.8 wt pet Sb alloy was directionally solidified with a positive thermal gradient of 140 K cm(-1) at a growth speed ranging from 0.8 to 30 mu m s(-1), and then it was quenched to retain the mushy zone morphology. The morphology of the mushy zone along its entire length has been characterized by using a serial sectioning and three-dimensional image reconstruction technique. Variation in the cellular/dendritic shape factor, hydraulic radius of the interdendritic region, and fraction solid along the mushy zone length has been studied. A comparison with predictions from theoretical models indicates that convection remarkably reduces the primary dendrite spacing while its influence on the dendrite tip radius is not as significant

    Search for the Lepton Flavor Violation Processes J/ψJ/\psi \to μτ\mu\tau and eτe\tau

    Full text link
    The lepton flavor violation processes J/ψμτJ/\psi \to \mu\tau and eτe\tau are searched for using a sample of 5.8×107\times 10^7 J/ψJ/\psi events collected with the BESII detector. Zero and one candidate events, consistent with the estimated background, are observed in J/ψμτ,τeνˉeντJ/\psi \to \mu\tau, \tau\to e\bar\nu_e\nu_{\tau} and J/ψeτ,τμνˉμντJ/\psi\to e\tau, \tau\to\mu\bar\nu_{\mu}\nu_{\tau} decays, respectively. Upper limits on the branching ratios are determined to be Br(J/ψμτ)<2.0×106Br(J/\psi\to\mu\tau)<2.0 \times 10^{-6} and Br(J/ψeτ)<8.3×106Br(J/\psi \to e\tau) < 8.3 \times10^{-6} at the 90% confidence level (C.L.).Comment: 9 pages, 2 figure

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem
    corecore