23 research outputs found

    Turkey meningoencephalitis in South Africa

    Get PDF
    Turkey meningo-encephalitis is a neuroparalytic disease of turkey’s first described and shown to be caused by a flavivirus in Israel. During 1978 a similar disease was observed in South Africa. In addition to the lesions described in Israel, myocarditis, regression of the ovary and egg peritonitis were constant findings. The similarity in host range, symptoms and pathological changes produced by the virus isolated locally and in Israel and the serological cross-reaction between the 2 virus isolates indicate that they are identical.The articles have been scanned in colour with a HP Scanjet 5590; 300dpi. Adobe Acrobat XI Pro was used to OCR the text and also for the merging and conversion to the final presentation PDF-format

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    The effects of bismuth and tin on the mechanochemical processing of aluminum-based composites for hydrogen generation purposes

    No full text
    The work described in this paper forms part of a study on the mechanochemical processing of Al with dissimilar metals for hydrogen generation purposes. Here, in an effort to contain the cost of the activation of Al, we have excluded use of the expensive precious metal In as an activation compound. Specifically, we describe the microstructural properties and hydrolysis reactivities of activated Al-Bi-Sn composites. Binary and ternary Al, Bi, and/or Sn composites were fabricated using a high-energy mechanochemical processing route and their reactivities towards pure water under standard ambient conditions were determined. Scanning electron microscopy analysis indicated that Bi and Sn intruded the Al particles, resulting in continuous galvanic interaction between anodic Al and cathodic Bi/Sn during hydrolysis reactions. Several composites containing 5 and 10 wt % activation compounds had >95% hydrogen yields. X-ray diffraction analysis indicated that the major phases detected were Al, Bi, and Sn, which suggests that intermetallic phases do not govern morphology changes and hydrolysis reactivity. Bi and Sn could be partially recovered from hydrolyzed Al using H2SO4 and HNO3, respectivel

    Silicon Carbide Formation Enhanced by In-Situ-Formed Silicon Nitride: An Approach to Capture Thermal Energy of CO-Rich Off-Gas Combustion

    No full text
    Carbothermic smelting of ores to produce metals or alloys in alternating current open/semiclosed and closed submerged arc furnaces, or in closed direct current furnaces, results in large volumes of CO-rich off-gas being generated. Most of the CO-rich off-gas is cleaned and flared on stacks, since the storing of large volumes is problematic due to the associated toxic and explosive risks. Flaring of CO-rich off-gas results in significant wastage of energy. In this study, an alternative method to partially capture the thermal energy associated with off-gas combustion, in the form of silicon carbide (SiC) generated from waste materials (quartz and anthracite fines), is proposed. SiC can partially replace conventional carbonaceous reductants used to produce alloys such as ferrochromium. The influences of quartz and anthracite particle size, treatment temperature, and gaseous atmosphere (nitrogen or air) on SiC formation were investigated. A quartz-anthracite mixture with 90 pct of the particles < 350.9 ”m carbothermically treated at 1873.15 K (1600 °C) resulted in almost complete conversion of quartz to SiC in both nitrogen and air atmospheres. The study indicated significant potential for industrial application of the process

    Thermally stable Pt/Ti mesh catalyst for catalytic hydrogen combustion

    No full text
    In this study, platinum (Pt) supported on titanium (Ti) mesh catalysts for catalytic hydrogen combustion were prepared by depositing Pt as a thin-layer on metallic or calcined Ti mesh. The Pt thin-layer could be stabilized as uniformly distributed, near nano-sized particles on the surface of calcined Ti mesh by exposing the freshly sputtered Pt to hydrogen. Temperatures between 478 and 525 °C were reached during hydrogen combustion and could be maintained at a hydrogen flow rate of 0.4 normal liter (Nl)/min for several hrs. It was determined that Ti mesh calcination at ≄900 °C formed an oxide layer on the surface of Ti wires, which prevented significant Pt aggregation. X-ray photoelectron spectroscopy revealed that the surface of Ti mesh was fully converted to TiO2 at ≄900 °C. Raman spectroscopy showed that the majority of TiO2 was present in the rutile phase, with some minor contribution from anatase-TiO2. The calcined Ti support was stable through all investigations and did not indicate any signs of degradation
    corecore