20 research outputs found

    The ^4He trimer as an Efimov system

    Full text link
    We review the results obtained in the last four decades which demonstrate the Efimov nature of the 4^4He three-atomic system.Comment: Review article for a special issue of the Few-Body Systems journal devoted to Efimov physic

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time, and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space. While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes, vast areas of the tropics remain understudied. In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity, but it remains among the least known forests in America and is often underrepresented in biodiversity databases. To worsen this situation, human-induced modifications may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge, it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Missing Data Augmentation for Bayesian Exponential Random Multi-Graph Models

    No full text
    In this paper we present an estimation algorithm for Bayesian multiplex exponential random graphs (BmERGMs) under missing network data. Social actors are often connected with more than one type of relation, thus forming a multiplex network. It is important to consider these multiplex structures simultaneously when analyzing a multiplex network. The importance of proper models of multiplex network structures is even more pronounced under the issue of missing network data. The proposed algorithm is able to estimate BmERGMs under missing data and can be used to obtain proper multiple imputations for multiplex network structures. It is an extension of Bayesian exponential random graphs (BERGMs) as implemented in the Bergm package in R. We demonstrate the algorithm on a well known example, with and without artificially simulated missing data
    corecore