202 research outputs found
Experimental study on the performance of thermosyphon solar water heater in Arequipa, Peru
Paper presented at the 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Malta, 16-18 July, 2012.An experimental device was design and built to evaluate the performance of a solar water heating system. Flat-plate solar collectors system were studied considering parallel configuration. Temperature sensors (k type thermocouple), a differential pressure transducer, a turbine type flow meter, and a pyranometer (global solar irradiance) were installed at strategic points for continuous monitoring. The studied parameters were: temperature at the inlet and outlet of the solar collectors and of the tank, heat absorbed by water, pressure drop and mass flow of water. The result shows the performance of the solar collectors system in specific conditions of the Arequipa city in Peru.dc201
Fault-controlled and stratabound dolostones in the Late Aptian-earliest Albian Benassal Formation (Maestrat Basin, E Spain) : petrology and geochemistry constrains
This study was developed under the ExxonMobil FC2 Alliance (Fundamental Controls on Flow in Carbonates). The authors wish to thank ExxonMobil Production Company and ExxonMobil Upstream Research Company for providing funding. The views in this article by Sherry L. Stafford are her own and not necessarily those of ExxonMobil. This research was supported by the Sedimentary Geology Research Group of the Generalitat de Catalunya (2014SGR251). We would like to thank Andrea Ceriani and Paola Ronchi for their critical and valuable reviews, and Associated Editor Piero Gianolla for the editorial work.Peer reviewedPostprin
Fault-controlled and stratabound Dolostones in the Late Aptian-earliest Albian Benassal Formation (Maestrat Basin, E Spain): petrology and geochemistry constrains
Fault-controlled hydrothermal dolomitization of the Late Aptian to earliest Albian Benassal Fm shallow water carbonates resulted in the seismic-scale stratabound dolostone geobodies that characterize the BenicĂ ssim case study (Maestrat Basin, E Spain). Petrological and geochemical data indicate that dolomite cement (DC1) filling intergranular porosity in grain-dominated facies constituted the initial stage of dolomitization. The bulk of the dolostone is formed by a replacive nonplanar-a to planar-s dolomite (RD1) crystal mosaic with very low porosity and characteristic retentive fabric. Neomorphic recrystallization of RD1 to form replacive dolomite RD2 occurred by successive dolomitizing fluid flow. The replacement sequence DC1-RD1-RD2 is characterized by a depletion in the oxygen isotopic composition (mean ÎŽ18O(V-PDB) values from â6.92, to â8.55, to â9.86Âż), which is interpreted to result from progressively higher temperature fluids. Clear dolomite overgrowths (overdolomitization) precipitated during the last stage of replacement. Strontium isotopic composition suggests that the most likely origin of magnesium was Cretaceous seawater-derived brines that were heated and enriched in radiogenic strontium and iron while circulating through the Paleozoic basement and/or Permo-Triassic red beds. Burial curves and analytical data indicate that the replacement took place at burial depths between 500 and 750 m, and by hydrothermal fluids exceeding temperatures of 80 °C. Following the partial dolomitization of the host rock, porosity considerably increased in dolostones by burial corrosion related to the circulation of acidic fluids derived from the emplacement of the Mississippi Valley-Type deposits. Overpressured acidic fluids circulated along faults, fractures and open stylolites. Saddle dolomite and ore-stage calcite cement filled most of the newly created vuggy porosity. Subsequent to MVT mineralization, precipitation of calcite cements resulted from the migration of meteoric-derived fluids during uplift and subaerial exposure. This late calcite cement destroyed most of the dolostone porosity and constitutes the main cause for its present day poor reservoir qualit
Universal relations in the finite-size correction terms of two-dimensional Ising models
Quite recently, Izmailian and Hu [Phys. Rev. Lett. 86, 5160 (2001)] studied
the finite-size correction terms for the free energy per spin and the inverse
correlation length of the critical two-dimensional Ising model. They obtained
the universal amplitude ratio for the coefficients of two series. In this study
we give a simple derivation of this universal relation; we do not use an
explicit form of series expansion. Moreover, we show that the Izmailian and
Hu's relation is reduced to a simple and exact relation between the free energy
and the correlation length. This equation holds at any temperature and has the
same form as the finite-size scaling.Comment: 4 pages, RevTeX, to appear in Phys. Rev. E, Rapid Communication
The Upper Aptian to Lower Albian syn-rift carbonate succession of the southern Maestrat Basin (Spain): Facies architecture and fault-controlled stratabound dolostones
Syn-rift shallow-marine carbonates of Late Aptian to Early Albian age in the southern Maestrat Basin (E Spain) register the thickest Aptian sedimentary record of the basin, and one of the most complete carbonate successions of this age reported in the northern Tethyan margin. The host limestones (Benassal Formation) are partially replaced by dolostones providing a new case study of fault-controlled hydrothermal dolomitization. The syn-rift sediments filled a graben controlled by normal basement faults. The Benassal Fm was deposited in a carbonate ramp with scarce siliciclastic input. The lithofacies are mainly characterized by the presence of orbitolinid foraminifera, corals and rudist bivalves fauna. The succession is stacked in three transgressive-regressive sequences (T-R) bounded by surfaces with sequence stratigraphic significance. The third sequence, which is reported for the first time in the basin, is formed by fully marine lithofacies of Albian age and represents the marine equivalent to the continental deposits of the Escucha Fm in the rest of the basin. The dolomitization of the host rock is spatially associated with the basement faults, and thus is fault-controlled. The dolostone forms seismic-scale stratabound tabular geobodies that extend several kilometres away from the fault zones, mostly in the hanging wall blocks, and host Mississippi Valley Type (MVT) deposits. The dolostones preferentially replaced middle to inner ramp grain-dominated facies from the third T-R sequences consisting of bioclastic packestones and peloidal grainstones. Field and petrology data indicate that the replacement took place after early calcite cementation and compaction, most likely during the Late Cretaceous post-rift stage of the basin. The dolostone registers the typical hydrothermal paragenesis constituted by the host limestone replacement, dolomite cementation and sulfide MVT mineralization. The Aptian succession studied provides a stratigraphic framework that can be used for oil exploration in age-equivalent rocks, especially in the ValĂšncia Trough, offshore Spain. Moreover, this new case study constitutes a world class outcrop analogue for similar partially stratabound, dolomitized limestone reservoirs worldwide
Enhanced local-type inflationary trispectrum from a non-vacuum initial state
We compute the primordial trispectrum for curvature perturbations produced
during cosmic inflation in models with standard kinetic terms, when the initial
quantum state is not necessarily the vacuum state. The presence of initial
perturbations enhances the trispectrum amplitude for configuration in which one
of the momenta, say , is much smaller than the others, . For those squeezed configurations the trispectrum acquires the
so-called local form, with a scale dependent amplitude that can get values of
order . This amplitude can be larger than the
prediction of the so-called Maldacena consistency relation by a factor ,
and can reach the sensitivity of forthcoming observations, even for
single-field inflationary models.Comment: 11 pages, 1 figure. References added, typos corrected, minor change
Core Set of Patient-Reported Outcome Measures for Measuring Quality of Life in Clinical Obesity Care
Purpose: The focus of measuring success in obesity treatment is shifting from weight loss to patientsâ health and quality of life. The objective of this study was to select a core set of patient-reported outcomes and patient-reported outcome measures to be used in clinical obesity care. Materials and Methods: The Standardizing Quality of Life in Obesity Treatment III, face-to-face hybrid consensus meeting, including people living with obesity as well as healthcare providers, was held in Maastricht, the Netherlands, in 2022. It was preceded by two prior multinational consensus meetings and a systematic review. Results: The meeting was attended by 27 participants, representing twelve countries from five continents. The participants included healthcare providers, such as surgeons, endocrinologists, dietitians, psychologists, researchers, and people living with obesity, most of whom were involved in patient representative networks. Three patient-reported outcome measures (patient-reported outcomes) were selected: the Impact of Weight on Quality of Life-Lite (self-esteem) measure, the BODY-Q (physical function, physical symptoms, psychological function, social function, eating behavior, and body image), and the Quality of Life for Obesity Surgery questionnaire (excess skin). No patient-reported outcome measure was selected for stigma. Conclusion: A core set of patient-reported outcomes and patient-reported outcome measures for measuring quality of life in clinical obesity care is established incorporating patientsâ and expertsâ opinions. This set should be used as a minimum for measuring quality of life in routine clinical practice. It is essential that individual patient-reported outcome measure scores are shared with people living with obesity in order to enhance patient engagement and shared decision-making. Graphical Abstract: (Figure presented.)</p
The global distribution and drivers of wood density and their impact on forest carbon stocks.
The density of wood is a key indicator of the carbon investment strategies of trees, impacting productivity and carbon storage. Despite its importance, the global variation in wood density and its environmental controls remain poorly understood, preventing accurate predictions of global forest carbon stocks. Here we analyse information from 1.1âmillion forest inventory plots alongside wood density data from 10,703 tree species to create a spatially explicit understanding of the global wood density distribution and its drivers. Our findings reveal a pronounced latitudinal gradient, with wood in tropical forests being up to 30% denser than that in boreal forests. In both angiosperms and gymnosperms, hydrothermal conditions represented by annual mean temperature and soil moisture emerged as the primary factors influencing the variation in wood density globally. This indicates similar environmental filters and evolutionary adaptations among distinct plant groups, underscoring the essential role of abiotic factors in determining wood density in forest ecosystems. Additionally, our study highlights the prominent role of disturbance, such as human modification and fire risk, in influencing wood density at more local scales. Factoring in the spatial variation of wood density notably changes the estimates of forest carbon stocks, leading to differences of up to 21% within biomes. Therefore, our research contributes to a deeper understanding of terrestrial biomass distribution and how environmental changes and disturbances impact forest ecosystems
Phylogenomics and the rise of the angiosperms
Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade
- âŠ