214 research outputs found
Three-dimensional Optical-resolution Photoacoustic Microscopy
Optical microscopy, providing valuable insights at the cellular and organelle levels, has been widely recognized as an enabling biomedical technology. As the mainstays of in vivo three-dimensional (3-D) optical microscopy, single-/multi-photon fluorescence microscopy and optical coherence tomography (OCT) have demonstrated their extraordinary sensitivities to fluorescence and optical scattering contrasts, respectively. However, the optical absorption contrast of biological tissues, which encodes essential physiological/pathological information, has not yet been assessable.
The emergence of biomedical photoacoustics has led to a new branch of optical microscopy optical-resolution photoacoustic microscopy (OR-PAM), where the optical irradiation is focused to the diffraction limit to achieve cellular1 or even subcellular level lateral resolution. As a valuable complement to existing optical microscopy technologies, OR-PAM brings in at least two novelties. First and most importantly, OR-PAM detects optical absorption contrasts with extraordinary sensitivity (i.e., 100%). Combining OR-PAM with fluorescence microscopy or with optical-scattering-based OCT (or with both) provides comprehensive optical properties of biological tissues. Second, OR-PAM encodes optical absorption into acoustic waves, in contrast to the pure optical processes in fluorescence microscopy and OCT, and provides background-free detection. The acoustic detection in OR-PAM mitigates the impacts of optical scattering on signal degradation and naturally eliminates possible interferences (i.e., crosstalks) between excitation and detection, which is a common problem in fluorescence microscopy due to the overlap between the excitation and fluorescence spectra.
Unique for optical absorption imaging, OR-PAM has demonstrated broad biomedical applications since its invention, including, but not limited to, neurology, ophthalmology, vascular biology, and dermatology. In this video, we teach the system configuration and alignment of OR-PAM as well as the experimental procedures for in vivo functional microvascular imaging
Contribution of biomimetic collagen-ligand interaction to intrafibrillar mineralization
Contemporary models of intrafibrillar mineralization mechanisms are established using collagen fibrils as templates without considering the contribution from collagen-bound apatite nucleation inhibitors. However, collagen matrices destined for mineralization in vertebrates contain bound matrix proteins for intrafibrillar mineralization. Negatively charged, high\u2013molecular weight polycarboxylic acid is cross-linked to reconstituted collagen to create a model for examining the contribution of collagen-ligand interaction to intrafibrillar mineralization. Cryogenic electron microscopy and molecular dynamics simulation show that, after cross-linking to collagen, the bound polyelectrolyte caches prenucleation cluster singlets into chain-like aggregates along the fibrillar surface to increase the pool of mineralization precursors available for intrafibrillar mineralization. Higher-quality mineralized scaffolds with better biomechanical properties are achieved compared with mineralization of unmodified scaffolds in polyelectrolyte-stabilized mineralization solution. Collagen-ligand interaction provides insights on the genesis of heterogeneously mineralized tissues and the potential causes of ectopic calcification in nonmineralized body tissues
Partial wave analysis of J/\psi \to \gamma \phi \phi
Using events collected in the BESII detector, the
radiative decay is
studied. The invariant mass distribution exhibits a near-threshold
enhancement that peaks around 2.24 GeV/.
A partial wave analysis shows that the structure is dominated by a
state () with a mass of
GeV/ and a width of GeV/. The
product branching fraction is: .Comment: 11 pages, 4 figures. corrected proof for journa
Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-
We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi -->
D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7
J/Psi events collected with the BESII detector at the BEPC. No excess of signal
above background is observed, and 90% confidence level upper limits on the
branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi
--> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure
Measurements of psi(2S) decays to octet baryon-antibaryon pairs
With a sample of 14 million psi(2S) events collected by the BESII detector at
the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p
p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their
branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4,
(3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4,
respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter
alpha is determined to be 0.82+-0.17+-0.04.Comment: 8 pages, 8 figure
Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar
The branching ratios and Angular distributions for J/psi decays to Lambda
Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure
VERTIGO (VERtical Transport In the Global Ocean) : a study of particle sources and flux attenuation in the North Pacific
Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 1522-1539, doi:10.1016/j.dsr2.2008.04.024.The VERtical Transport In the Global Ocean (VERTIGO) study examined particle sources and
fluxes through the ocean’s “twilight zone” (defined here as depths below the euphotic zone to
1000 m). Interdisciplinary process studies were conducted at contrasting sites off Hawaii
(ALOHA) and in the NW Pacific (K2) during 3 week occupations in 2004 and 2005, respectively.
We examine in this overview paper the contrasting physical, chemical and biological settings and
how these conditions impact the source characteristics of the sinking material and the transport
efficiency through the twilight zone. A major finding in VERTIGO is the considerably lower
transfer efficiency (Teff) of particulate organic carbon (POC), POC flux 500 / 150 m, at ALOHA
(20%) vs. K2 (50%). This efficiency is higher in the diatom-dominated setting at K2 where
silica-rich particles dominate the flux at the end of a diatom bloom, and where zooplankton and
their pellets are larger. At K2, the drawdown of macronutrients is used to assess export and
suggests that shallow remineralization above our 150 m trap is significant, especially for N
relative to Si. We explore here also surface export ratios (POC flux/primary production) and
possible reasons why this ratio is higher at K2, especially during the first trap deployment. When
we compare the 500 m fluxes to deep moored traps, both sites lose about half of the sinking POC
by >4000 m, but this comparison is limited in that fluxes at depth may have both a local and
distant component. Certainly, the greatest difference in particle flux attenuation is in the
mesopelagic, and we highlight other VERTIGO papers that provide a more detailed examination
of the particle sources, flux and processes that attenuate the flux of sinking particles. Ultimately,
we contend that at least three types of processes need to be considered: heterotrophic degradation
of sinking particles, zooplankton migration and surface feeding, and lateral sources of suspended
and sinking materials. We have evidence that all of these processes impacted the net attenuation
of particle flux vs. depth measured in VERTIGO and would therefore need to be considered and
quantified in order to understand the magnitude and efficiency of the ocean’s biological pump.Funding for VERTIGO was provided primarily by research grants
from the US National Science Foundation Programs in Chemical and Biological Oceanography
(KOB, CHL, MWS, DKS, DAS). Additional US and non-US grants included: US Department
of Energy, Office of Science, Biological and Environmental Research Program (JKBB); the
Gordon and Betty Moore Foundation (DMK); the Australian Cooperative Research Centre
program and Australian Antarctic Division (TWT); Chinese NSFC and MOST programs (NZJ);
Research Foundation Flanders and Vrije Universiteit Brussel (FD, ME); JAMSTEC (MCH); New
Zealand Public Good Science Foundation (PWB); and internal WHOI sources and a contribution
from the John Aure and Cathryn Ann Hansen Buesseler Foundation (KOB)
Measurements of the observed cross sections for exclusive light hadrons containing at , 3.650 and 3.6648 GeV
By analyzing the data sets of 17.3, 6.5 and 1.0 pb taken,
respectively, at , 3.650 and 3.6648 GeV with the BES-II
detector at the BEPC collider, we measure the observed cross sections for
, , ,
and at the three energy
points. Based on these cross sections we set the upper limits on the observed
cross sections and the branching fractions for decay into these
final states at 90% C.L..Comment: 7 pages, 2 figure
Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays
By analyzing about 33 data sample collected at and around 3.773
GeV with the BES-II detector at the BEPC collider, we directly measure the
branching fractions for the neutral and charged inclusive semimuonic decays
to be and , and determine the ratio of the two branching
fractions to be
- …