4 research outputs found

    The UK Centre for Astrobiology:A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011-2016

    Get PDF
    Authors thank all those individuals, UK research councils, funding agencies, nonprofit organisations, companies and corporations and UK and non-UK government agencies, who have so generously supported our aspirations and hopes over the last 5 years and supported UKCA projects. They include the STFC, the Engineering and Physical Sciences Research Council (EPSRC), the Natural Environmental Research Council (NERC), the EU, the UK Space Agency, NASA, the European Space Agency (ESA), The Crown Estate, Cleveland Potash and others. The Astrobiology Academy has been supported by the UK Space Agency (UKSA), National Space Centre, the Science and Technology Facilities Council (STFC), Dynamic Earth, The Royal Astronomical Society, The Rotary Club (Shetlands) and the NASA Astrobiology Institute.The UK Centre for Astrobiology (UKCA) was set up in 2011 as a virtual center to contribute to astrobiology research, education, and outreach. After 5 years, we describe this center and its work in each of these areas. Its research has focused on studying life in extreme environments, the limits of life on Earth, and implications for habitability elsewhere. Among its research infrastructure projects, UKCA has assembled an underground astrobiology laboratory that has hosted a deep subsurface planetary analog program, and it has developed new flow-through systems to study extraterrestrial aqueous environments. UKCA has used this research backdrop to develop education programs in astrobiology, including a massive open online course in astrobiology that has attracted over 120,000 students, a teacher training program, and an initiative to take astrobiology into prisons. In this paper, we review these activities and others with a particular focus on providing lessons to others who may consider setting up an astrobiology center, institute, or science facility. We discuss experience in integrating astrobiology research into teaching and education activities.Publisher PDFPeer reviewe

    Earth as a Tool for Astrobiology—A European Perspective

    Get PDF

    Searching for subterranean-adapted microorganisms as part of the ESA CAVES and PANGAEA Astronaut training programs for planetary exploration.

    No full text
    Caves on Earth are catching the attention of the space agencies for testing new approaches to planetary science investigations. These subterranean environments could protect astronauts from the high levels of cosmic radiation and extremes of temperature during human missions to the Moon and Mars. As these celestial bodies are likely to contain caves and a record of secondary mineralization, studying secondary mineral deposits and associated microbial life in caves on Earth can help us to better understand where to look on Mars’s subsurface. In this sense, the development of procedures and of portable instruments able to perform non-invasive, in-situ analysis has provided an impressive impulse not only for the terrestrial geological field, but also for the next generation of planetary surface explorations. In the framework of the CAVES and PANGAEA astronaut training programme organized by the European Space Agency (ESA), microbiological samples have been collected inside volcanic and carbonate rocks caves with the aim of studying subterranean-adapted microorganisms and to compare them and their respective dwelling with the recently discovered exoplanet biosignatures. This study comprises the most comprehensive technological efforts to characterize microbial life and microbe-mineral interactions in caves. In this sense, improved sampling methodologies and a wide range of both laboratory and handheld analyses for microbial species detection and classification have been performed. Analytical instruments include high-throughput portable flow cytometer, handheld ATP luminescence and next generation sequencing, using the Illumina Mi Seq platform, of the 16S rRNA gene to identify microbial communities associated with the secondary mineral deposits. In addition, the suitability of these cave speleothems as biosignature repositories was investigated by field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDS). Our data indicated that the microbial mats and secondary mineral deposits found in the caves contain highly specialized mineral-utilizing microorganisms able to promote biomineralization processes. In addition, this study showed that deep caves offer a challenging subsurface environment for astrobiological research and planetary science explorations

    Earth as a Tool for Astrobiology - A European Perspective

    Get PDF
    International audienceScientists use the Earth as a tool for astrobiology by analyzing planetary field analogues (i.e. terrestrial samples and field sites that resemble planetary bodies in our Solar System). In addition, they expose the selected planetary field analogues in simulation chambers to conditions that mimic the ones of planets, moons and Low Earth Orbit (LEO) space conditions, as well as the chemistry occurring in interstellar and cometary ices. This paper reviews the ways the Earth is used by astrobiologists: (i) by conducting planetary field analogue studies to investigate extant life from extreme environments, its metabolisms, adaptation strategies and modern biosignatures; (ii) by conducting planetary field analogue studies to investigate extinct life from the oldest rocks on our planet and its biosignatures; (iii) by exposing terrestrial samples to simulated space or planetary environments and producing a sample analogue to investigate changes in minerals, biosignatures and microorganisms. The European Space Agency (ESA) created a topical team in 2011 to investigate recent activities using the Earth as a tool for astrobiology and to formulate recommendations and scientific needs to improve ground-based astrobiological research. Space is an important tool for astrobiology (see Horneck et al. in Astrobiology, 16:201–243, 2016; Cottin et al., 2017), but access to space is limited. Complementing research on Earth provides fast access, more replications and higher sample throughput. The major conclusions of the topical team and suggestions for the future include more scientifically qualified calls for field campaigns with planetary analogy, and a centralized point of contact at ESA or the EU for the organization of a survey of such expeditions. An improvement of the coordinated logistics, infrastructures and funding system supporting the combination of field work with planetary simulation investigations, as well as an optimization of the scientific return and data processing, data storage and data distribution is also needed. Finally, a coordinated EU or ESA education and outreach program would improve the participation of the public in the astrobiological activities
    corecore