383 research outputs found

    Bumblebees display stimulus-specific persistence behaviour after being trained on delayed reinforcement

    Get PDF
    In uncertain environments, animals often face the challenge of deciding whether to stay with their current foraging option or leave to pursue the next opportunity. The voluntary decision to persist at a location or with one option is a critical cognitive ability in animal temporal decision-making. Little is known about whether foraging insects form temporal expectations of reward and how these expectations affect their learning and rapid, short-term foraging decisions. Here, we trained bumblebees on a simple colour discrimination task whereby they entered different opaque tunnels surrounded by coloured discs (artificial flowers) and received reinforcement (appetitive sugar water or aversive quinine solution depending on flower colour). One group received reinforcement immediately and the other after a variable delay (0–3 s). We then recorded how long bees were willing to wait/persist when reinforcement was delayed indefinitely. Bumblebees trained with delays voluntarily stayed in tunnels longer than bees trained without delays. Delay-trained bees also waited/persisted longer after choosing the reward-associated flower compared to the punishment-associated flower, suggesting stimulus-specific temporal associations. Strikingly, while training with delayed reinforcement did not affect colour discrimination, it appeared to facilitate the generalisation of temporal associations to ambiguous stimuli in bumblebees. Our findings suggest that bumblebees can be trained to form temporal expectations, and that these expectations can be incorporated into their decision-making processes, highlighting bumblebees’ cognitive flexibility in temporal information usage

    Electron interference and entanglement in coupled 1D systems with noise

    Full text link
    We estimate the role of noise in the formation of entanglement and in the appearance of single- and two-electron interference in systems of coupled one-dimensional channels semiconductors. Two cases are considered: a single-particle interferometer and a two-particle interferometer exploiting Coulomb interaction. In both of them, environmental noise yields a randomization of the carrier phases. Our results assess how that the complementarity relation linking single-particle behavior to nonlocal quantities, such as entanglement and environment-induced decoherence, acts in electron interferometry. We show that, in a experimental implementation of the setups examined, one- and two-electron detection probability at the output drains can be used to evaluate the decoherence phenomena and the degree of entanglement.Comment: 12 pages, 6 figures. v2: added some references and corrected tex

    Three Drinking-Water–Associated Cryptosporidiosis Outbreaks, Northern Ireland

    Get PDF
    Three recent drinking-water–associated cryptosporidiosis outbreaks in Northern Ireland were investigated by using genotyping and subgenotyping tools. One Cryptosporidium parvum outbreak was caused by the bovine genotype, and two were caused by the human genotype. Subgenotyping analyses indicate that two predominant subgenotypes were associated with these outbreaks and had been circulating in the community

    Gravitationally lensed QSOs in the ISSIS/WSO-UV era

    Full text link
    Gravitationally lensed QSOs (GLQs) at redshift z = 1-2 play a key role in understanding the cosmic evolution of the innermost parts of active galaxies (black holes, accretion disks, coronas and internal jets), as well as the structure of galaxies at intermediate redshifts. With respect to studies of normal QSOs, GLQ programmes have several advantages. For example, a monitoring of GLQs may lead to unambiguous detections of intrinsic and extrinsic variations. Both kinds of variations can be used to discuss central engines in distant QSOs, and mass distributions and compositions of lensing galaxies. In this context, UV data are of particular interest, since they correspond to emissions from the immediate surroundings of the supermassive black hole. We describe some observation strategies to analyse optically bright GLQs at z of about 1.5, using ISSIS (CfS) on board World Space Observatory-Ultraviolet.Comment: 7 pages, 4 figures, Accepted for publication in Astrophysics & Space Scienc

    Quantum phase transitions from topology in momentum space

    Full text link
    Many quantum condensed matter systems are strongly correlated and strongly interacting fermionic systems, which cannot be treated perturbatively. However, physics which emerges in the low-energy corner does not depend on the complicated details of the system and is relatively simple. It is determined by the nodes in the fermionic spectrum, which are protected by topology in momentum space (in some cases, in combination with the vacuum symmetry). Close to the nodes the behavior of the system becomes universal; and the universality classes are determined by the toplogical invariants in momentum space. When one changes the parameters of the system, the transitions are expected to occur between the vacua with the same symmetry but which belong to different universality classes. Different types of quantum phase transitions governed by topology in momentum space are discussed in this Chapter. They involve Fermi surfaces, Fermi points, Fermi lines, and also the topological transitions between the fully gapped states. The consideration based on the momentum space topology of the Green's function is general and is applicable to the vacua of relativistic quantum fields. This is illustrated by the possible quantum phase transition governed by topology of nodes in the spectrum of elementary particles of Standard Model.Comment: 45 pages, 17 figures, 83 references, Chapter for the book "Quantum Simulations via Analogues: From Phase Transitions to Black Holes", to appear in Springer lecture notes in physics (LNP

    Approximate Controllability for Linear Stochastic Differential Equations in Infinite Dimensions

    Full text link
    The objective of the paper is to investigate the approximate controllability property of a linear stochastic control system with values in a separable real Hilbert space. In a first step we prove the existence and uniqueness for the solution of the dual linear backward stochastic differential equation. This equation has the particularity that in addition to an unbounded operator acting on the Y-component of the solution there is still another one acting on the Z-component. With the help of this dual equation we then deduce the duality between approximate controllability and observability. Finally, under the assumption that the unbounded operator acting on the state process of the forward equation is an infinitesimal generator of an exponentially stable semigroup, we show that the generalized Hautus test provides a necessary condition for the approximate controllability. The paper generalizes former results by Buckdahn, Quincampoix and Tessitore (2006) and Goreac (2007) from the finite dimensional to the infinite dimensional case.Comment: 31 pages, submitted to AM

    Relativistic Continuum Hartree Bogoliubov Theory for Ground State Properties of Exotic Nuclei

    Full text link
    The Relativistic Continuum Hartree-Bogoliubov (RCHB) theory, which properly takes into account the pairing correlation and the coupling to (discretized) continuum via Bogoliubov transformation in a microscopic and self-consistent way, has been reviewed together with its new interpretation of the halo phenomena observed in light nuclei as the scattering of particle pairs into the continuum, the prediction of the exotic phenomena -- giant halos in nuclei near neutron drip line, the reproduction of interaction cross sections and charge-changing cross sections in light exotic nuclei in combination with the Glauber theory, better restoration of pseudospin symmetry in exotic nuclei, predictions of exotic phenomena in hyper nuclei, and new magic numbers in superheavy nuclei, etc. Recent investigations on new effective interactions, the density dependence of the interaction strengthes, the RMF theory on the Woods-Saxon basis, the single particle resonant states, and the resonant BCS (rBCS) method for the pairing correlation, etc. are also presented in some details.Comment: 79 pages. Prog. Part. Nucl. Phys. (2005) in pres
    • …
    corecore