27 research outputs found

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Regularity and convergence analysis in Sobolev and Hölder spaces for generalized Whittle–Matérn fields

    Get PDF
    We analyze several types of Galerkin approximations of a Gaussian random field Z: D× Ω→ R indexed by a Euclidean domain D⊂ Rd whose covariance structure is determined by a negative fractional power L-2β of a second-order elliptic differential operator L: = - ∇ · (A∇) + κ2. Under minimal assumptions on the domain D, the coefficients A: D→ Rd×d, κ: D→ R, and the fractional exponent β> 0 , we prove convergence in Lq(Ω; Hσ(D)) and in Lq(Ω; Cδ(D¯)) at (essentially) optimal rates for (1) spectral Galerkin methods and (2) finite element approximations. Specifically, our analysis is solely based on H1+α(D) -regularity of the differential operator L, where 0 < α≤ 1. For this setting, we furthermore provide rigorous estimates for the error in the covariance function of these approximations in L∞(D× D) and in the mixed Sobolev space Hσ,σ(D× D) , showing convergence which is more than twice as fast compared to the corresponding Lq(Ω; Hσ(D)) -rate. We perform several numerical experiments which validate our theoretical results for (a) the original Whittle–Matérn class, where A≡IdRd and κ≡ const. , and (b) an example of anisotropic, non-stationary Gaussian random fields in d= 2 dimensions, where A: D→ R2×2 and κ: D→ R are spatially varying

    Regularity and convergence analysis in Sobolev and Hölder spaces for generalized Whittle–Matérn fields

    No full text
    We analyze several types of Galerkin approximations of a Gaussian random field Z: D× Ω→ R indexed by a Euclidean domain D⊂ Rd whose covariance structure is determined by a negative fractional power L-2β of a second-order elliptic differential operator L: = - ∇ · (A∇) + κ2. Under minimal assumptions on the domain D, the coefficients A: D→ Rd×d, κ: D→ R, and the fractional exponent β> 0 , we prove convergence in Lq(Ω; Hσ(D)) and in Lq(Ω; Cδ(D¯)) at (essentially) optimal rates for (1) spectral Galerkin methods and (2) finite element approximations. Specifically, our analysis is solely based on H1+α(D) -regularity of the differential operator L, where 0 < α≤ 1. For this setting, we furthermore provide rigorous estimates for the error in the covariance function of these approximations in L∞(D× D) and in the mixed Sobolev space Hσ,σ(D× D) , showing convergence which is more than twice as fast compared to the corresponding Lq(Ω; Hσ(D)) -rate. We perform several numerical experiments which validate our theoretical results for (a) the original Whittle–Matérn class, where A≡IdRd and κ≡ const. , and (b) an example of anisotropic, non-stationary Gaussian random fields in d= 2 dimensions, where A: D→ R2×2 and κ: D→ R are spatially varying
    corecore