682 research outputs found

    Measuring proper motions of isolated neutron stars with Chandra

    Get PDF
    The excellent spatial resolution of the Chandra observatory offers the unprecedented possibility to measure proper motions at X-ray wavelength with relatively high accuracy using as reference the background of extragalactic or remote galactic X-ray sources. We took advantage of this capability to constrain the proper motion of RX J0806.4-4123 and RX J0420.0-5022, two X-ray bright and radio quiet isolated neutron stars (INSs) discovered by ROSAT and lacking an optical counterpart. In this paper, we present results from a preliminary analysis from which we derive 2 sigma upper limits of 76 mas/yr and 138 mas/yr on the proper motions of RX J0806.4-4123 and RX J0420.0-5022 respectively. We use these values together with those of other ROSAT discovered INSs to constrain the origin, distance and evolutionary status of this particular group of objects. We find that the tangential velocities of radio quiet ROSAT neutron stars are probably consistent with those of 'normal' pulsars. Their distribution on the sky and, for those having accurate proper motion vectors, their possible birth places, all point to a local population, probably created in the part of the Gould Belt nearest to the earth.Comment: 8 pages, 3 figures, to appear in Astrophysics and Space Science, in the proceedings of "Isolated Neutron Stars: from the Interior to the Surface", edited by D. Page, R. Turolla and S. Zan

    The Effective Field Theory of Inflation

    Get PDF
    We study the effective field theory of inflation, i.e. the most general theory describing the fluctuations around a quasi de Sitter background, in the case of single field models. The scalar mode can be eaten by the metric by going to unitary gauge. In this gauge, the most general theory is built with the lowest dimension operators invariant under spatial diffeomorphisms, like g^{00} and K_{mu nu}, the extrinsic curvature of constant time surfaces. This approach allows us to characterize all the possible high energy corrections to simple slow-roll inflation, whose sizes are constrained by experiments. Also, it describes in a common language all single field models, including those with a small speed of sound and Ghost Inflation, and it makes explicit the implications of having a quasi de Sitter background. The non-linear realization of time diffeomorphisms forces correlation among different observables, like a reduced speed of sound and an enhanced level of non-Gaussianity.Comment: 26 pages. v2: minor corrections, JHEP published versio

    An Assessment of the Use of Chimpanzees in Hepatitis C Research Past, Present and Future: 2. Alternative Replacement Methods

    Get PDF
    The use of chimpanzees in hepatitis C virus (HCV) research was examined in the report associated with this paper (1: Validity of the Chimpanzee Model), in which it was concluded that claims of past necessity of chimpanzee use were exaggerated, and that claims of current and future indispensability were unjustifiable. Furthermore, given the serious scientific and ethical issues surrounding chimpanzee experimentation, it was proposed that it must now be considered redundant — particularly in light of the demonstrable contribution of alternative methods to past and current scientific progress, and the future promise that these methods hold. This paper builds on this evidence, by examining the development of alternative approaches to the investigation of HCV, and by reviewing examples of how these methods have contributed, and are continuing to contribute substantially, to progress in this field. It augments the argument against chimpanzee use by demonstrating the comprehensive nature of these methods and the valuable data they deliver. The entire life-cycle of HCV can now be investigated in a human (and much more relevant) context, without recourse to chimpanzee use. This also includes the testing of new therapies and vaccines. Consequently, there is no sound argument against the changes in public policy that propose a move away from chimpanzee use in US laboratories

    A Search for Fast Radio Bursts with the GBNCC Pulsar Survey

    Get PDF
    We report on a search for Fast Radio Bursts (FRBs) with the Green Bank Northern Celestial Cap (GBNCC) Pulsar Survey at 350 MHz. Pointings amounting to a total on-sky time of 61 days were searched to a DM of 3000 pc cm3^{-3} while the rest (23 days; 29% of the total time) were searched to a DM of 500 pc cm3^{-3}. No FRBs were detected in the pointings observed through May 2016. We estimate a 95% confidence upper limit on the FRB rate of 3.6×1033.6\times 10^3 FRBs sky1^{-1} day1^{-1} above a peak flux density of 0.63 Jy at 350 MHz for an intrinsic pulse width of 5 ms. We place constraints on the spectral index α\alpha by running simulations for different astrophysical scenarios and cumulative flux density distributions. The non-detection with GBNCC is consistent with the 1.4-GHz rate reported for the Parkes surveys for α>+0.35\alpha > +0.35 in the absence of scattering and free-free absorption and α>0.3\alpha > -0.3 in the presence of scattering, for a Euclidean flux distribution. The constraints imply that FRBs exhibit either a flat spectrum or a spectral turnover at frequencies above 400 MHz. These constraints also allow estimation of the number of bursts that can be detected with current and upcoming surveys. We predict that CHIME may detect anywhere from several to \sim50 FRBs a day (depending on model assumptions), making it well suited for interesting constraints on spectral index, the log NN-log SS slope and pulse profile evolution across its bandwidth (400-800 MHz).Comment: 18 pages, 10 figures, Accepted for publication in Ap

    Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths

    Get PDF
    We review observations of several classes of neutron-star-powered outflows: pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe interacting directly with interstellar medium (ISM), and magnetar-powered outflows. We describe radio, X-ray, and gamma-ray observations of PWNe, focusing first on integrated spectral-energy distributions (SEDs) and global spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering array of morphologies, with jets, trails, and other structures. Several of the 23 so far identified magnetars show evidence for continuous or sporadic emission of material, sometimes associated with giant flares, and a few possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release

    Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    Identified mid-rapidity particle spectra of π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (RdAuR_{dAu}) between protons (p+pˉ)(p+\bar{p}) and charged hadrons (hh) in the transverse momentum range 1.2<pT<3.01.2<{p_{T}}<3.0 GeV/c is measured to be 1.19±0.051.19\pm0.05(stat)±0.03\pm0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p+pˉ)/h(p+\bar{p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from transverse momentum 1.8 GeV/c to 3. GeV/

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV

    Full text link
    We present the first measurement of directed flow (v1v_1) at RHIC. v1v_1 is found to be consistent with zero at pseudorapidities η\eta from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4<η<42.4 < |\eta| < 4. The latter observation is similar to data from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. Back-to-back jets emitted out-of-plane are found to be suppressed more if compared to those emitted in-plane, which is consistent with {\it jet quenching}. Using the scalar product method, we systematically compared azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
    corecore