1,005 research outputs found

    Is manganese-doped diamond a ferromagnetic semiconductor?

    Full text link
    We use density-functional theoretical methods to examine the recent prediction, based on a mean-field solution of the Zener model, that diamond doped by Mn (with spin S=5/2) would be a dilute magnetic semiconductor that remains ferromagnetic well above room temperature. Our findings suggest this to be unlikely, for four reasons: (1) substitutional Mn in diamond has a low-spin S=1/2 ground state; (2) the substitutional site is energetically unfavorable relative to the much larger "divacancy" site; 3) Mn in the divacancy site is an acceptor, but with only hyperdeep levels, and hence the holes are likely to remain localized; (4) the calculated Heisenberg couplings between Mn in nearby divacancy sites are two orders of magnitude smaller than for substitutional Mn in germanium.Comment: 5 pages, 5 figure

    Ferromagnetism in Mn doped GaAs due to substitutional-interstitial complexes

    Full text link
    While most calculations on the properties of the ferromagnetic semiconductor GaAs:Mn have focussed on isolated Mn substituting the Ga site (MnGa_{Ga}), we investigate here whether alternate lattice sites are favored and what the magnetic consequences of this might be. Under As-rich (Ga-poor) conditions prevalent at growth, we find that the formation energies are lower for MnGa_{Ga} over interstitial Mn (Mni_i).As the Fermi energy is shifted towards the valence band maximum via external pp-doping, the formation energy of Mni_i is reduced relative to MnGa_{Ga}. Furthermore, under epitaxial growth conditions, the solubility of both substitutional and interstitial Mn are strongly enhanced over what is possible under bulk growth conditions. The high concentration of Mn attained under epitaxial growth of p-type material opens the possibility of Mn atoms forming small clusters. We consider various types of clusters, including the Coulomb-stabilized clusters involving two MnGa_{Ga} and one Mni_i. While isolated Mni_i are hole killers (donors), and therefore destroy ferromagnetism,complexes such as MnGa_{Ga}-Mni_i-MnGa_{Ga}) are found to be more stable than complexes involving MnGa_{Ga}-MnGa_{Ga}-MnGa_{Ga}. The former complexes exhibit partial or total quenching of holes, yet Mni_i in these complexes provide a channel for a ferromagnetic arrangement of the spins on the two MnGa_{Ga} within the complex. This suggests that ferromagnetism in Mn doped GaAs arises both from holes due to isolated MnGa_{Ga} as well as from strongly Coulomb stabilized MnGa_{Ga}-Mni_i-MnGa_{Ga} clusters.Comment: 7 figure

    Encoded Recoupling and Decoupling: An Alternative to Quantum Error Correcting Codes, Applied to Trapped Ion Quantum Computation

    Get PDF
    A recently developed theory for eliminating decoherence and design constraints in quantum computers, ``encoded recoupling and decoupling'', is shown to be fully compatible with a promising proposal for an architecture enabling scalable ion-trap quantum computation [D. Kielpinski et al., Nature 417, 709 (2002)]. Logical qubits are encoded into pairs of ions. Logic gates are implemented using the Sorensen-Molmer (SM) scheme applied to pairs of ions at a time. The encoding offers continuous protection against collective dephasing. Decoupling pulses, that are also implemented using the SM scheme directly to the encoded qubits, are capable of further reducing various other sources of qubit decoherence, such as due to differential dephasing and due to decohered vibrational modes. The feasibility of using the relatively slow SM pulses in a decoupling scheme quenching the latter source of decoherence follows from the observed 1/f spectrum of the vibrational bath.Comment: 12 pages, no figure

    Cell shape analysis of random tessellations based on Minkowski tensors

    Full text link
    To which degree are shape indices of individual cells of a tessellation characteristic for the stochastic process that generates them? Within the context of stochastic geometry and the physics of disordered materials, this corresponds to the question of relationships between different stochastic models. In the context of image analysis of synthetic and biological materials, this question is central to the problem of inferring information about formation processes from spatial measurements of resulting random structures. We address this question by a theory-based simulation study of shape indices derived from Minkowski tensors for a variety of tessellation models. We focus on the relationship between two indices: an isoperimetric ratio of the empirical averages of cell volume and area and the cell elongation quantified by eigenvalue ratios of interfacial Minkowski tensors. Simulation data for these quantities, as well as for distributions thereof and for correlations of cell shape and volume, are presented for Voronoi mosaics of the Poisson point process, determinantal and permanental point processes, and Gibbs hard-core and random sequential absorption processes as well as for Laguerre tessellations of polydisperse spheres and STIT- and Poisson hyperplane tessellations. These data are complemented by mechanically stable crystalline sphere and disordered ellipsoid packings and area-minimising foam models. We find that shape indices of individual cells are not sufficient to unambiguously identify the generating process even amongst this limited set of processes. However, we identify significant differences of the shape indices between many of these tessellation models. Given a realization of a tessellation, these shape indices can narrow the choice of possible generating processes, providing a powerful tool which can be further strengthened by density-resolved volume-shape correlations.Comment: Chapter of the forthcoming book "Tensor Valuations and their Applications in Stochastic Geometry and Imaging" in Lecture Notes in Mathematics edited by Markus Kiderlen and Eva B. Vedel Jense

    Adaptive periodicity in the infectivity of malaria gametocytes to mosquitoes

    Get PDF
    Daily rhythms in behaviour, physiology, and molecular processes are expected to enable organisms to appropriately schedule activities according to consequences of the daily rotation of the Earth. For parasites, this includes capitalizing on periodicity in transmission opportunities and for hosts/vectors, this may select for rhythms in immune defence. We examine rhythms in the density and infectivity of transmission forms (gametocytes) of rodent malaria parasites in the host’s blood, parasite development inside mosquito vectors, and potential for onwards transmission. Furthermore, we simultaneously test whether mosquitoes exhibit rhythms in susceptibility. We reveal that at night, gametocytes are twice as infective, despite being less numerous in the blood. Enhanced infectiousness at night interacts with mosquito rhythms to increase sporozoite burdens four-fold when mosquitoes feed during their rest phase. Thus, changes in mosquito biting time (due to bed nets) may render gametocytes less infective, but this is compensated for by the greater mosquito susceptibility

    Placing high-redshift quasars in perspective: A catalog of spectroscopic properties from the gemini near infrared spectrograph-distant quasar survey

    Get PDF
    We present spectroscopic measurements for 226 sources from the Gemini Near Infrared Spectrograph-Distant Quasar Survey (GNIRS-DQS). Being the largest uniform, homogeneous survey of its kind, it represents a fluxlimited sample (mi≤19.0 mag, H≤16.5 mag) of Sloan Digital Sky Survey (SDSS) quasars at 1.5 ≤ z ≤ 3.5 with a monochromatic luminosity (λLλ) at 5100 Å in the range of 1044-1046 erg s-1. A combination of the GNIRS and SDSS spectra covers principal quasar diagnostic features, chiefly the C IV λ1549, Mg II λλ2798, 2803, Hβ λ4861, and [O III] λλ4959, 5007 emission lines, in each source. The spectral inventory will be utilized primarily to develop prescriptions for obtaining more accurate and precise redshifts, black hole masses, and accretion rates for all quasars. Additionally, the measurements will facilitate an understanding of the dependence of rest-frame ultraviolet-optical spectral properties of quasars on redshift, luminosity, and Eddington ratio, and test whether the physical properties of the quasar central engine evolve over cosmic time.Fil: Matthews, Brandon M.. University of North Texas; Estados UnidosFil: Shemmer, Ohad. University of North Texas; Estados UnidosFil: Dix, Cooper. University of North Texas; Estados UnidosFil: Brotherton, Michael S.. University of Wyoming; Estados UnidosFil: Myers, Adam D.. University of Wyoming; Estados UnidosFil: Andruchow, Ileana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Brandt, W.N.. State University of Pennsylvania; Estados UnidosFil: Ferrero, Gabriel A.. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Gallagher, S.C.. The University Of Western Ontario; CanadáFil: Green, Richard. University of Arizona; Estados UnidosFil: Lira, Paulina. Universidad de Chile.; ChileFil: Plotkin, Richard M.. University of Nevada. Deparment of Physics; Estados UnidosFil: Richards, Gordon T.. Drexel University; Estados UnidosFil: Runnoe, Jessie C.. Vanderbilt University; Estados UnidosFil: Schneider, Donald P.. State University of Pennsylvania; Estados UnidosFil: Shen, Yue. University of Illinois at Urbana; Estados UnidosFil: Strauss, Michael A.. University of Princeton; Estados UnidosFil: Wills, Beverley J.. University of Texas at Austin; Estados Unido

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade
    • …
    corecore