175 research outputs found

    The trade-off between tidal-turbine array yield and environmental impact: a habitat suitability modelling approach

    Get PDF
    In the drive towards a carbon-free society, tidal energy has the potential to become a valuable part of the UK energy supply. Developments are subject to intense scrutiny, and potential environmental impacts must be assessed. Unfortunately many of these impacts are still poorly understood, including the implications that come with altering the hydrodynamics. Here, methods are proposed to quantify ecological impact and to incorporate its minimisation into the array design process. Four tidal developments in the Pentland Firth are modelled with the array optimisation tool OpenTidalFarm, that designs arrays to generate the maximum possible profit. Maximum entropy modelling is used to create habitat suitability maps for species that respond to changes in bedshear stress. Changes in habitat suitability caused by an altered tidal regime are assessed. OpenTidalFarm is adapted to simultaneously optimise array design to maximise both this habitat suitability and to maximise the profit of the array. The problem is thus posed as a multi-objective optimisation problem, and a set of Pareto solutions found, allowing trade-offs between these two objectives to be identified. The methods proposed generate array designs that have reduced negative impact, or even positive impact, on the habitat suitability of specific species or habitats of interest

    Measurement of differential cross sections for Z bosons produced in association with charm jets in pp collisions at √s = 13 TeV

    Get PDF

    Search for MSSM Higgs bosons decaying to μ⁺μ⁻ in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for Higgs and Z boson decays to J/ψ or Y pairs in the four-muon final state in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at √s = 13 TeV

    Get PDF

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    Full text link
    The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation

    Observation of nuclear modifications in W±^{±} boson production in pPb collisions at √S^{S}NN = 8.16 TeV

    Get PDF

    Studies of charm and beauty hadron long-range correlations in pp and pPb collisions at LHC energies

    Get PDF

    A measurement of the Higgs boson mass in the diphoton decay channel

    Get PDF
    A measurement of the mass of the Higgs boson in the diphoton decay channel is presented. This analysis is based on 35.9fb1^{-1} of proton-proton collision data collected during the 2016 LHC running period, with the CMS detector at a centre-of-mass energy of 13TeV. A refined detector calibration and new analysis techniques have been used to improve the precision of this measurement. The Higgs boson mass is measured to be mH_{H}=125.78 ±0.26 GeV. This is combined with a measurement of mHalready performed in the H→ZZ→4l{l} decay channel using the same data set, giving mH_{H}=125.46 ±0.16 GeV. This result, when further combined with an earlier measurement of mHusing data collected in 2011 and 2012 with the CMS detector, gives a value for the Higgs boson mass of mH_{H}=125.38 ±0.14 GeV. This is currently the most precise measurement of the mass of the Higgs boson
    corecore