716 research outputs found

    Local existence of analytical solutions to an incompressible Lagrangian stochastic model in a periodic domain

    Get PDF
    We consider an incompressible kinetic Fokker Planck equation in the flat torus, which is a simplified version of the Lagrangian stochastic models for turbulent flows introduced by S.B. Pope in the context of computational fluid dynamics. The main difficulties in its treatment arise from a pressure type force that couples the Fokker Planck equation with a Poisson equation which strongly depends on the second order moments of the fluid velocity. In this paper we prove short time existence of analytic solutions in the one-dimensional case, for which we are able to use techniques and functional norms that have been recently introduced in the study of a related singular model.Comment: 32 page

    General relation for stationary probability density functions

    Get PDF
    A linear relation between a normalized, time (t) dependent, statistically stationary quantity (z) and the normalized conditional expectation (r) of ∂2z/∂t2 allows r to generally satisfy two conditions subject to the stationarity requirement. Experimental data for both temperature and vorticity in several turbulent flows indicate that this relation appears universal. As a result, the exact expression derived by Pope and Ching [Phys. Fluids A 5, 1529 (1993)] for the probability density function (PDF) of any stationary quantity should generally reduce to the simpler form obtained by Ching [Phys. Rev. Lett. 70, 283 (1993)].J. Mi and R. A. Antoni

    Predicting specific impulse distributions for spherical explosives in the extreme near-field using a Gaussian function

    Get PDF
    Accurate quantification of the blast load arising from detonation of a high explosive has applications in transport security, infrastructure assessment and defence. In order to design efficient and safe protective systems in such aggressive environments, it is of critical importance to understand the magnitude and distribution of loading on a structural component located close to an explosive charge. In particular, peak specific impulse is the primary parameter that governs structural deformation under short-duration loading. Within this so-called extreme near-field region, existing semi-empirical methods are known to be inaccurate, and high-fidelity numerical schemes are generally hampered by a lack of available experimental validation data. As such, the blast protection community is not currently equipped with a satisfactory fast-running tool for load prediction in the near-field. In this article, a validated computational model is used to develop a suite of numerical near-field blast load distributions, which are shown to follow a similar normalised shape. This forms the basis of the data-driven predictive model developed herein: a Gaussian function is fit to the normalised loading distributions, and a power law is used to calculate the magnitude of the curve according to established scaling laws. The predictive method is rigorously assessed against the existing numerical dataset, and is validated against new test models and available experimental data. High levels of agreement are demonstrated throughout, with typical variations of <5% between experiment/model and prediction. The new approach presented in this article allows the analyst to rapidly compute the distribution of specific impulse across the loaded face of a wide range of target sizes and near-field scaled distances and provides a benchmark for data-driven modelling approaches to capture blast loading phenomena in more complex scenarios

    Yakhot's model of strong turbulence: A generalization of scaling models of turbulence

    Full text link
    We report on some implications of the theory of turbulence developed by V. Yakhot [V. Yakhot, Phys. Rev. E {\bf 57}(2) (1998)]. In particular we focus on the expression for the scaling exponents ζn\zeta_{n}. We show that Yakhot's result contains three well known scaling models as special cases, namely K41, K62 and the theory by V. L'vov and I. Procaccia [V. L'vov & I. Procaccia, Phys. Rev. E {\bf 62}(6) (2000)]. The model furthermore yields a theoretical justification for the method of extended self--similarity (ESS).Comment: 8 page

    Numerical studies towards practical large-eddy simulation

    Get PDF
    Large-eddy simulation developments and validations are presented for an improved simulation of turbulent internal flows. Numerical methods are proposed according to two competing criteria: numerical qualities (precision and spectral characteristics), and adaptability to complex configurations. First, methods are tested on academic test-cases, in order to abridge with fundamental studies. Consistent results are obtained using adaptable finite volume method, with higher order advection fluxes, implicit grid filtering and "low-cost" shear-improved Smagorinsky model. This analysis particularly focuses on mean flow, fluctuations, two-point correlations and spectra. Moreover, it is shown that exponential averaging is a promising tool for LES implementation in complex geometry with deterministic unsteadiness. Finally, adaptability of the method is demonstrated by application to a configuration representative of blade-tip clearance flow in a turbomachine

    When Does Eddy Viscosity Damp Subfilter Scales Sufficiently?

    Get PDF
    Large eddy simulation (LES) seeks to predict the dynamics of spatially filtered turbulent flows. The very essence is that the LES-solution contains only scales of size ≄Δ, where Δ denotes some user-chosen length scale. This property enables us to perform a LES when it is not feasible to compute the full, turbulent solution of the Navier-Stokes equations. Therefore, in case the large eddy simulation is based on an eddy viscosity model we determine the eddy viscosity such that any scales of size <Δ are dynamically insignificant. In this paper, we address the following two questions: how much eddy diffusion is needed to (a) balance the production of scales of size smaller than Δ; and (b) damp any disturbances having a scale of size smaller than Δ initially. From this we deduce that the eddy viscosity Îœe has to depend on the invariants q = Âœtr(S^2) and r =−⅓tr(S^3) of the (filtered) strain rate tensor S. The simplest model is then given by Îœe = 3/2(Δ/π)^2|r|/q. This model is successfully tested for a turbulent channel flow (Reτ = 590).

    Brane-world Kaluza-Klein reductions and Branes on the Brane

    Get PDF
    We present a systematic study of a new type of consistent ``Brane-world Kaluza-Klein Reduction,'' which describe fully non-linear deformations of co-dimension one objects that arise as solutions of a large class of gauged supergravity theories in diverse dimensions, and whose world-volume theories are described by ungauged supergravities with one half of the original supersymmetry. In addition, we provide oxidations of these Ansatze which are in general related to sphere compactified higher dimensional string theory or M-theory. Within each class we also provide explicit solutions of brane configurations localised on the world-brane. We show that at the Cauchy horizon (in the transverse dimension of the consistently Kaluza-Klein reduced world-brane) there is a curvature singularity for any configuration with a non-null Riemann curvature or a non-vanishing Ricci scalar that lives in the world-brane. Since the massive Kaluza-Klein modes can be consistently decoupled, they cannot participate in regulating these singularities.Comment: latex, 30 page

    Path lengths in turbulence

    Full text link
    By tracking tracer particles at high speeds and for long times, we study the geometric statistics of Lagrangian trajectories in an intensely turbulent laboratory flow. In particular, we consider the distinction between the displacement of particles from their initial positions and the total distance they travel. The difference of these two quantities shows power-law scaling in the inertial range. By comparing them with simulations of a chaotic but non-turbulent flow and a Lagrangian Stochastic model, we suggest that our results are a signature of turbulence.Comment: accepted for publication in Journal of Statistical Physic

    In vivo and in vitro proinflammatory effects of particulate air pollution (PM10).

    Get PDF
    Epidemiologic studies have reported associations between fine particulate air pollution, especially particles less than 10 mm in diameter (PM10), and the development of exacerbations of asthma and chronic obstructive pulmonary disease. However, the mechanism is unknown. We tested our hypothesis that PM10 induces oxidant stress, causing inflammation and injury to airway epithelium. We assessed the effects of intratracheal instillation of PM10 in rat lungs. The influx of inflammatory cells was measured in bronchoalveolar lavage (BAL). Airspace epithelial permeability was assessed as total protein in bronchoalveolar lavage fluid (BALF) in vivo. The oxidant properties of PM10 were determined by their ability to cause changes in reduced glutathione (GSH) and oxidized glutathione (GSSG). We also compared the effects of PM10 with those of fine (CB) and ultrafine (ufCB) carbon black particles. Six hours after intratracheal instillation of PM10, we noted an influx of neutrophils (up to 15% of total BAL cells) in the alveolar space, increased epithelial permeability, an increase in total protein in BALF from 0.39 +/- 0.01 to 0.62 +/- 0.01 mg/ml (mean +/- SEM) and increased lactate dehydrogenase concentrations in BALF. An even greater inflammatory response was observed after intratracheal instillation of ufCB, but not after CB instillation. PM10 had oxidant activity in vivo, as shown by decreased GSH in BALF (from 0.36 +/- 0.05 to 0.25 +/- 0.01 nmol/ml) after instillation. BAL leukocytes from rats treated with PM10 produced greater amounts of nitric oxide, measured as nitrite (control 3.07 +/- 0.33, treated 4.45 +/- 0.23 mM/1 x 10(6) cells) and tumor necrosis factor alpha (control 21.0 +/- 3.1, treated 179.2 +/- 29.4 unit/1 x 10(6) cells) in culture than BAL leukocytes obtained from control animals. These studies provide evidence that PM10 has free radical activity and causes lung inflammation and epithelial injury. These data support our hypothesis concerning the mechanism for the adverse effects of particulate air pollution on patients with airway diseases
    • 

    corecore