Large-eddy simulation developments and validations are presented for an
improved simulation of turbulent internal flows. Numerical methods are proposed
according to two competing criteria: numerical qualities (precision and
spectral characteristics), and adaptability to complex configurations. First,
methods are tested on academic test-cases, in order to abridge with fundamental
studies. Consistent results are obtained using adaptable finite volume method,
with higher order advection fluxes, implicit grid filtering and "low-cost"
shear-improved Smagorinsky model. This analysis particularly focuses on mean
flow, fluctuations, two-point correlations and spectra. Moreover, it is shown
that exponential averaging is a promising tool for LES implementation in
complex geometry with deterministic unsteadiness. Finally, adaptability of the
method is demonstrated by application to a configuration representative of
blade-tip clearance flow in a turbomachine