
J Sci Comput (2011) 49:94–110
DOI 10.1007/s10915-011-9504-4

When Does Eddy Viscosity Damp Subfilter Scales
Sufficiently?

Roel Verstappen

Received: 3 March 2010 / Revised: 27 May 2011 / Accepted: 6 June 2011 / Published online: 29 June 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Large eddy simulation (LES) seeks to predict the dynamics of spatially filtered
turbulent flows. The very essence is that the LES-solution contains only scales of size ≥�,
where � denotes some user-chosen length scale. This property enables us to perform a LES
when it is not feasible to compute the full, turbulent solution of the Navier-Stokes equations.
Therefore, in case the large eddy simulation is based on an eddy viscosity model we deter-
mine the eddy viscosity such that any scales of size <� are dynamically insignificant. In
this paper, we address the following two questions: how much eddy diffusion is needed to
(a) balance the production of scales of size smaller than �; and (b) damp any disturbances
having a scale of size smaller than � initially. From this we deduce that the eddy viscosity νe

has to depend on the invariants q = 1
2 tr(S2) and r = − 1

3 tr(S3) of the (filtered) strain rate ten-
sor S. The simplest model is then given by νe = 3

2 (�/π)2|r|/q. This model is successfully
tested for a turbulent channel flow (Reτ = 590).

Keywords Large eddy simulation · Eddy viscosity · Confinement of turbulent dynamics ·
Invariants of strain rate tensor

1 Introduction

1.1 Navier-Stokes Equations and Turbulence

The Navier-Stokes (NS) equations provide an appropriate model for turbulent flow. In the
absence of compressibility (∇ · u = 0), the equations are

∂tu + (u · ∇)u + ∇p = 2ν∇ · S(u) (1)
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where u is the fluid velocity field, p stands for the pressure, ν denotes the viscosity, and
S(u) = 1

2 (∇u + ∇uT ) is the symmetric part of the velocity gradient. Turbulent flow is gen-
erally visualized as a cascade of kinetic energy, where the large scales of motion are driven.
Since the large scales cannot reach a near equilibrium between the rate at which energy is
supplied and the rate at which energy is dissipated (by the action of viscosity), they break up,
transferring their energy to somewhat smaller scales; this transport process is governed by
the nonlinearity in (1). The smaller scales undergo a similar break-up process, and transfer
their energy to yet smaller scales. The energy cascade continues until the scale becomes so
small that dissipation is getting predominant. The entire spectrum—ranging from the scales
where the flow is driven to the smallest, dissipative scales—is to be resolved numerically
when turbulence is computed directly from the NS-equations. This, however, is not feasible
in many cases, i.e., the NS-equations (1) do not provide a tractable model (see e.g. Ref. [1]).
Hence, finding a coarse-grained description is one of the main challenges to turbulence re-
search. A promising methodology for that is large eddy simulation (LES). Put simply, the
aim of LES is to compute only the scales of motion (eddies) which are larger than some
user-chosen length scale.

1.2 Large Eddy Simulation

Large eddy simulation seeks to predict the dynamics of spatially filtered turbulent flows.
Therefore a spatial filter, with filter length �, is applied to (1),

∂tu + (u · ∇)u + ∇p − 2ν∇ · S(u) = ∇ · (uuT − uuT
)

(2)

where it is assumed that the filter u �→ u commutes with differentiation. The right-hand side
represents the effects of the residual scales on the ‘large eddies’ (the part of the fluid motion
with velocity u). It depends on both u and u, due to the nonlinearity. The dependence on u

is removed by introducing a closure model τ(u) that approximates uuT − uuT somehow.
The dynamics of the large eddies is then governed by

∂tv + (v · ∇)v + ∇p̃ − 2ν∇ · S(v) = −∇ · τ(v) (3)

where the variable name is changed from u to v to stress that the solution of (3) differs from
that of (2), because the closure model (represented by τ ) is not exact. The inequality τ(v) �=
uuT − uuT is crucial, since information is to be lost: the solution v of (3) must possess less
scales of motion (degrees of freedom) than the Navier-Stokes solution u. Especially in case
the filter is an isomorphism, it is theoretically possible to express the subfilter contribution
uuT −uuT exactly in terms of the filtered field u and thus to construct an exact model. This,
however, does not reduce the complexity of the problem; see also [2] for a more detailed
discussion. Finding a closure model that is both inexact (to reduce the complexity of the
flow) and accurate (to approximate the dynamics of the larger eddies) represents the main
difficulty to LES.

The LES equations (3) need be discretized in space and time to find a numerical approx-
imation of v. In principle, any discretization method that is suited for the Navier-Stokes
equations (1) can be applied to the LES equations (3) too. Here, the grid is to be taken such
that the smallest scale in the flow field can be represented. In many applications, however,
the LES-grid is so coarse that the discretization may be viewed as a second filter that trun-
cates the solution at the size of the grid. In that case subgrid-scale effects are to be taken into
account, see [3, 4], e.g.
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We take the closure model τ symmetric, because uuT −uuT is symmetric. Additionally,
we can take the trace of τ equal to zero without loss of generality, because the trace can be
included as part of the scalar p̃. Since turbulence is so far from being completely understood,
there is a wide range of closure models, mostly based on heuristic, ad hoc arguments that
cannot be derived from the NS-equations, see for example [5] and the references therein.
The most commonly used closure model is given by

τ(v) = −2νeS(v) (4)

where νe denotes the eddy viscosity. Notice that this closure model is not time reversible
(for νe > 0); forward in time it provides dissipation, i.e., the complexity of the flow can be
reduced, depending on the amount eddy viscosity.

The classical Smagorinsky model reads

νe = C2
S�

2
√

4q (5)

where q(v) is an invariant of the strain rate tensor S(v):

q(v) = 1

2
tr(S2(v))

Here it may be remarked that (5) is commonly formulated in terms of |S(v)| =√
2 tr(S(v)2) = √

4q . Further, it may be noticed that the model (5) depends only on
the length � of the filter, and not on the details of the map u �→ u. Various value for
the Smagorinsky constant CS have been proposed, mainly ranging from CS = 0.1 to
CS = 0.17 [1]. Instead of adhering to a constant value one can also take CS = CS(v). In
the well-known dynamical procedure, for instance, the coefficient CS is computed with the
help of the Jacobi identity (in least-square sense) [6].

1.3 Problem Setting

The solution v of (3) is composed of eddies of different size. The very essence of large
eddy simulation is that v contains only eddies of size ≥ �, where � is the user-chosen
length of the filter u �→ u. This property enables us to solve (3) numerically when it is not
feasible to compute the solution of (1), i.e., the full turbulent flow field u. Equations (3)–(4)
is formally equivalent to the NS-equations (1) with a modified diffusion coefficient; hence,
the desired effect is to eliminate all scales of size < �. Therefore we view the eddy viscosity
as a function of v that is to be determined such that the dynamically significant scales of
motion in the solution v of (3)–(4) are greater than (or equal to) �. Strictly speaking, the
eddy viscosity is to be determined such that the corresponding solution v of (3)–(4) forms
the ‘best’ approximation of u. To that end, however, we have to rely on phenomenological
arguments, because we do not know how to derive the ‘best’ eddy viscosity from the Navier-
Stokes equations. In the present approach we try not to make any specific assumptions (about
the spectrum, e.g.). Rather, we focus on the question: “when does eddy viscosity damp
subfilter scales sufficiently?”

2 When Does Eddy Viscosity Stop the Production of Smaller Scales of Motion from
Continuing at the Filter Scale?

In this section, a lower bound for the eddy viscosity is determined from the requirement
that the production of any eddies of size smaller than � by the nonlinear mechanism in the
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left-hand side of (3) is counteracted by the dissipation in the right-hand side of (3), where
the closure model is given by (4).

To that end, we consider an arbitrary part �� with diameter � of the flow domain and
define the filtering operator u �→ u by

u = 1

|��|
∫

��

u(x, t) dx

In other words, the filtered velocity u is equal to the average of u over ��. This filter is
known as a box or top-hat filter.

Furthermore, we suppose that the solution v of (3) is periodic on ��, so that boundary
terms resulting from integration by parts (in the computations to come) vanish. It may be
emphasized here that a solution u of (1) is generally not �-periodic. However, if � tends
towards the smallest scale of motion homogeneity may be assumed, i.e., then the sub �-scale
flow tends to become �-periodic. In the computations to come the periodicity conditions are
applied to v, not to u nor u, and � is supposed to be the smallest scale in v. This partially
justifies our choice of the boundary conditions for v.

Poincaré’s inequality states that there exists a constant C�, depending only on ��, such
that for every function v in the Sobolev space W 1,2(��),

∫

��

‖v − v‖2 dx ≤ C�

∫

��

‖∇v‖2 dx (6)

The optimal constant C�, the Poincaré constant for the domain ��, is the inverse of the
smallest (non-zero) eigenvalue of the dissipative operator −∇2 on �� [7]. It is given by

C� = (�/π)2

for convex domains �� [8].
The residual field v′ = v − v contains eddies of size smaller than �. These eddies are

produced by the nonlinear, convective term in (3). The eddy viscosity must keep them from
becoming dynamically significant. Poincaré’s inequality (6) shows that the L2(��) norm of
the residual field v′ is bounded by a constant (independent of v) times the L2(��) norm of
∇v. Consequently, we can confine the dynamically significant part of the motion to scales
≥ � by damping the velocity gradient with the help of an eddy viscosity. To see how the
evolution of the L2(��) norm of ∇v is to be damped, we consider the residual field v′ first:

d

dt

∫

��

1

2
‖v′‖2 dx = −ν

∫

��

‖∇v′‖2 dx +
∫

��

T (v, v′) dx − νe

∫

��

‖∇v′‖2 dx

Here,
∫

��
T (v, v′) dx represents the energy transfer from v to v′. Equation (3) should not

produce subfilter scales, i.e., the eddy diffusion has to balance the energy transfer at the scale
set by the filter. Now suppose that the eddy viscosity is taken such that the last two terms in
the right-hand side above cancel each other out. Then we have

d

dt

∫

��

1

2
‖v′‖2 dx = −ν

∫

��

‖∇v′‖2 dx (7)

This equation shows that the evolution of the energy of v′ is not depending on v. Stated
otherwise, the energy of subfilter scales dissipates at a natural rate, without any forcing
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mechanism involving scales larger than �. With the help of the Poincaré inequality (6), we
obtain from (7) that

d

dt

∫

��

‖v′‖2(x, t) dx ≤ (−2ν/C�)

∫

��

‖v′‖2(x, t) dx

The Gronwall lemma leads then to
∫

��

‖v′‖2(x, t) dx ≤ exp(−2νt/C�)

∫

��

‖v′‖2(x,0) dx

In other words, the energy of the subfilter scales decays at least as fast as exp (−2νt/C�),
for any filter length �. Applying Poincaré’s inequality and Gronwalls lemma to

d

dt

∫

��

1

2
‖∇v‖2 dx = −ν

∫

��

‖∇2v‖2 dx (8)

results into the same rate of decay:
∫

��

‖v′‖2(x, t) dx
(6)≤ C�

∫

��

‖∇v‖2(x, t) dx

(8)≤ C� exp(−2νt/C�)

∫

��

‖∇v‖2(x,0) dx

To give (8) also a somewhat different interpretation, we take an arbitrary part �� with diam-
eter � of the flow domain, with � ≥ � and consider both the incompressible NS equations (1)
and the LES-model given by (3)–(4) on �� with periodic boundary conditions. Furthermore
we supply energy to the flow at a given rate. This energy cannot escape from the box ��,
since we have applied periodic conditions. Hence, the energy has to dissipate within �� at
the rate at which it is supplied. In case of the NS equations the dissipation rate is given by
ε = ν

∫
��

‖∇u‖2dx. In the LES-model, the dissipation rate becomes
∫

��
(ν + νe)‖∇v‖2dx.

Without eddy viscosity, i.e., νe = 0, the dissipation rate of the LES is much smaller than ε

if v ≈ u. Indeed, the mapping u �→ u smoothes the velocity field, i.e., reduces the gradient.
Now suppose that the amount of eddy viscosity is taken too little. Then, ‖∇v‖2 will have
(a tendency) to increase, because the energy that is supplied to the flow is to be dissipated at
the given rate. Since the norm of the velocity gradient ‖∇v‖ provides a consistent charac-
terization of the reciprocal of the time scale, an increase of ‖∇v‖ implies that smaller time
scales are produced. That is, eddies of size � in the field v become unstable and break up,
transferring their energy to smaller eddies. So, an increase of

∫
��

‖∇v‖2 dx indicates that
scales with a length smaller than � are produced. A LES can deal with this only if � > �. In
other words, the eddy viscosity has to stop the production of smaller scales from continuing
at the scale � = � set by the filter. Therefore,

∫
��

‖∇v‖2 dx should decrease. Equation (8)
states that this integral decreases at the rate given by the fluid viscosity.

The (minimum) amount of eddy viscosity needed to satisfy the dissipative condition (8)
can be derived by taking the L2 inner product of (3)–(4) with ∇2v. Integration by parts
yields

d

dt

∫

��

1

2
‖∇v‖2 dx = −ν

∫

��

‖∇2v‖2 dx

+
∫

��

((v · ∇)v · ∇2v − νe‖∇2v‖2) dx (9)
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where νe is assumed to be constant in ��. As remarked before, the boundary terms that
result from the integration by parts vanish because �� is a periodic box. Thus we see that
(8) holds if

νe

∫

��

‖∇2v‖2 dx =
∫

��

(v · ∇)v · ∇2v dx (10)

Chae [9] (pp. 791–792) showed that, for a periodic box, the convective term in the right-hand
side of (10) is equal to 4

∫
��

r(v) dx, where

r(v) = −1

3
tr(S3(v)) = −detS(v)

is an invariant of the strain rate tensor S(v). It may be remarked here that the calculations
by Chae are done for the 3D Euler equations; yet one can add the viscous term to each step
of the calculations in Ref. [9]. The other nonzero invariant of S(v), q(v) = 1

2 tr(S2(v)), has
the property that 4

∫
��

q(v) dx = ∫
��

‖∇ × v‖2 dx. See again Ref. [9] for instance. Since

∇2v = −∇ × ω with ω = ∇ × v, it follows that (10) is equivalent to

νe

∫

��

q(ω)dx =
∫

��

r(v) dx (11)

In conclusion, the eddy viscous damping in (9) counteracts the nonlinear production of
scales < � if the eddy viscosity is taken according to (11). Here, the left-hand side rep-
resents the dissipation, and the right-hand side stands for the production, i.e., the invariant
q(ω) provides a measure for the dissipation, and the production can be quantified with the
help of the invariant r(v).

2.1 Vortex Stretching

A noticeable difference between (11) and the standard Smagorinsky model (5) with CS

constant is that the standard model depends only on the invariant q—i.e., not on r . The role
of the invariant r(v) can be explained with the help of the vorticity ω = ∇ × v. By taking
the curl of (3)–(4) we find the vorticity equation and from that we obtain that the enstrophy
is governed by

d

dt

∫

��

1

2
‖ω‖2 dx =

∫

��

ω · Sωdx − (ν + νe)

∫

��

‖∇ω‖2 dx

In the right-hand side we recognize the vortex stretching term that can produce smaller scales
of motion and the eddy diffusive term that should counteract the production of smaller scales
at the scale �. It can be shown that (see [9], e.g.)

νe

∫

��

‖∇ω‖2 dx = νe

∫

��

4q(ω)dx and
∫

��

4 r(v) dx =
∫

��

ω · Sωdx

Notice that the latter equality shows that r(v) is a measure for the vortex stretching. Thus,
(11) can also be interpreted as follows: the eddy viscosity is taken such that the correspond-
ing damping of the enstrophy equals the production by means of the vortex stretching mech-
anism:

νe

∫

��

‖∇ω‖2 dx =
∫

��

ω · S(v)ω dx (12)
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In other words, the eddy viscosity prevents the intensification of vorticity at the scale � set
by the map u �→ u. Finally, it may be emphasized that (11) and (12) are equivalent.

2.2 Modeling Consistency

The dissipative term in (11) can be bounded from below with the help of Poincaré’s inequal-
ity:

∫

��

q(ω)dx =
∫

��

1

4
‖∇ω‖2 dx ≥ 1

C�

∫

��

1

4
‖ω‖2 dx = 1

C�

∫

��

q(v) dx

where the equality-sign holds if ω is fully aligned with the eigenfunction of the dissipative
operator −∇2 on �� associated with the smallest non-zero eigenvalue. Consequently, the
eddy viscous term in (11) dominates the nonlinear, convective term if

νe

C�

∫

��

q(v) dx ≥
∫

��

r(v) dx (13)

Condition (13) ensures that subfilter scales are dynamically insignificant, meaning that the
energy of the scales of size ≤ � decays at least as fast as exp(−2νt/C�), for any filter
length �, if the eddy viscosity is taken such that (13) holds.

It has not been established, thus far, that the choice of the minimal eddy viscosity satis-
fying (13), i.e.,

νe = C� r(v)/q(v) (14)

will adequately model the subfilter contributions to the evolution of the filtered velocity.
From the filtered Navier-Stokes solution u, we can analyze the consistency of the eddy vis-
cosity model (uuT − uuT )tr ≈ 2νeS(u) by a priori testing. Here we consider the traceless
part (defined by Atr = A − 1

3 tr(A)I ), because the trace of uuT − uuT can be incorporated

into the pressure. A series expansion gives (uuT − uuT )tr = −�2

12 (∇u∇uT )tr + O(�4).
The leading term is known as the Clark model [10]. Unfortunately, the Clark model cannot
be used as a stand-alone LES model, since it produces a finite time blow-up of the kinetic
energy [11]. In other words, the Clark model can produce length-scales smaller than �. Pro-
jecting both (14) and the Clark model onto S(v) leads to the following consistency question

2C�

r

q

∫

��

S(v) : S(v) dx
?= −�2

12

∫

��

(∇v∇vT )tr : S(v) dx (15)

The integral in the right-hand side equals −4
∫

��
r(v) dx [9]. This shows that r provides a

measure of the alignment of the Clark model and S. By definition we have S : S = 2q . Con-
sequently, (15) shows that the order of the modeling error is optimal if C� = �2/12. This
value is in fair agreement with the Poincaré constant, C� = �2/π2; yet, it is slightly lower.
The overall situation is sketched in Fig. 1. The horizontal axis in this figure represents all
possible eddy viscosity models; the axis is parameterized by the eddy viscosity. The shaded
part of the horizontal axis in Fig. 1 depicts the subset of eddy viscosities that satisfy (13).
The projection of the Clark model onto the horizontal axis falls outside the shaded area;
hence it cannot be guaranteed that this projection damps subfilter scales adequately. This
reflects that the Clark model can produce subfilter scales [11]. Equation (14) forms the best
approximation of the projection of the Clark model provided the eddy viscosity model is
restricted by (13). The projection onto S(v) is chosen to evaluate the dissipation provided
by these models.
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Fig. 1 Some LES-models in the
space of symmetric 3 × 3 tensors

Furthermore, (14) yields νe = 0 in any (part of the) flow where r = 0. That is, the eddy
viscosity vanishes if the nonlinear transport to scales < � is absent. At a no-slip wall r = 0
too; hence νe = 0 at the wall. In homogeneous, isotropic turbulence, we have r/q ∝ Re1/2 .

Therefore νe/ν ∝ Re3/2 for fixed �. Additionally, we obtain that νe + ν → ν if ν ∝ Re−1 ∝
�2r/q ∝ �2 Re1/2, that is if � ∝ Re−3/4. This shows that the eddy viscosity given by (14)
vanishes as � is of the order of Re−3/4, i.e., if � approaches the Kolmogorov scale.

3 When Does Eddy Viscosity Damp Subfilter-scale Disturbances Properly?

In Sect. 2, we have determined the eddy viscosity such that the energy that is transferred
from the large eddies (scales of size ≥ �) to the subfilter scales is dissipated so fast that
the production of subfilter scales by the nonlinear mechanism in the left-hand side of (3)
becomes dynamically irrelevant. Condition (12) ensures that the transfer of energy from the
large eddies to the subfiler scales is balanced properly by the eddy dissipation. This condition
is necessary, but not sufficient, to limit the dynamics governed by (3) to scales of size ≥ �.
To that end, the energy that is transferred from the subfilter scales to the large eddies, should
be dynamically insignificant too. Here it may be noticed that according to (13) we can simply
take νe = 0 if r < 0. This is because (13) states only that the eddy dissipation balances (or
dominates) the transfer of energy from the larger eddies to the subfilter scales; hence (13)
does not prescribe the eddy viscosity if energy is transferred from scales of size smaller than
� to larger scales (backscatter). Also in the case r < 0 the solution v of (3) should solely
depend on scales of size ≥ �. To see if the backward cascade of energy is properly closed,
we suppose that the velocity field v does not contain subfilter scales initially, i.e., at time
t = 0 we have v = v in an arbitrary part �� with diameter � of the flow domain. Now,
we superimpose an instantaneous, solenoidal, subfilter-scale perturbation δv to v on ��.
Initially one may conceive the unperturbed field v = v as being constant on ��, whereas
the perturbation δv is any (non-constant) periodic function on ��. The evolution of the
perturbed velocity v + δv is governed by (3)–(4) with v replaced by v + δv. As before, we
take the eddy viscosity constant in ��. The dynamics of the disturbance is then given by

∂t δv + (v · ∇)δv + (δv · ∇)v + (δv · ∇)δv + ∇δp = 2(ν + νe)∇ · S(δv) (16)

where δv stands for a arbitrary, space-periodic, vector field having divergence equal to zero,
and δv = 0 at t = 0. Scales of size smaller than � do not become dynamically significant
if the difference between the two solutions v and v + δv vanishes sufficiently fast. The
evolution of the L2(��) norm of δv is given by

d

dt

∫

��

1

2
‖δv‖2 dx

(16)= −
∫

��

δv · S(v)δv dx − (νe + ν)

∫

��

‖∇δv‖2 dx
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Notice that a number of terms vanish here, because the convective operator is skew symmet-
ric, i.e., (v · ∇)∗ = −(v · ∇) [12]. The term

∫
��

δv ·S(v)δv dx represents the energy transfer
from v to δv. In the absence of this term we can simply take νe = 0. As in Sect. 2 the eddy
viscosity is taken such that it neutralizes the production term,

νe

∫

��

‖∇δv‖2 dx = −
∫

��

δv · S(v)δv dx (17)

Then, we have

d

dt

∫

��

1

2
‖δv‖2 dx = −ν

∫

��

‖∇δv‖2 dx

This equation shows that the evolution of the energy of the perturbation δv is not depending
on the unperturbed, base flow v. Compare (7). As a result, the energy of subfilter scales dis-
sipates at a natural rate (without any nonlinear mechanism involving scales larger than �).
Again with the help of the Poincaré inequality (6) and Gronwalls lemma, we get

∫

��

‖δv‖2(x, t) dx ≤ exp (−2νt/C�)

∫

��

‖δv‖2(x,0) dx

This shows that the energy of subfilter disturbances decays at least as fast as exp (−2νt/C�),
for any filter length �. So, in conclusion, the LES-model given by (3)–(4) is stable with
respect to subfilter disturbances—i.e., the backward cascade of energy is properly closed—
if (17) holds.

4 A Condition for the Eddy Dissipation

The solution v of (3) should contain only eddies of size ≥ �, where � is the user-chosen
length of the filter. This condition is worked out for an eddy viscosity model in Sects. 2–3.
From that we conclude that the eddy viscosity is to be taken such that (12) and (17) are
satisfied. The essential difference between these two equalities is the sign of the transport
term: if we would simply disregard the difference between δv with ω and name them both φ,
then (12) and (17) become

νe

∫

��

‖∇φ‖2 dx = ±
∫

��

φ · S(v)φ dx

where the plus sign corresponds to (12) and the minus sign to (17). From a physical point
of view the plus sign represents the requirement that the forward cascade of energy stops at
the scale � set by the filter (that is, the production of smaller scales stops at the filter scale);
the minus sign expresses that there is no backward cascade too (that is, scales of size < �

cannot become dynamically relevant, since any subfilter perturbations decay exponentially
fast).

The dissipative term in the expression above can be bounded from below with the help
of Poincaré’s inequality:

∫

��

‖∇φ‖2 dx ≥ 1

C�

∫

��

‖φ‖2 dx
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Notice again that the Poincaré constant C� is the inverse of the smallest (non-zero) eigen-
value of the dissipative operator −∇2 on ��. The equality holds if φ is aligned with the
associated eigenfunction. Therefore we may take the eddy viscosity such that

νe

∫

��

‖φ‖2 dx ≥ ±C�

∫

��

φ · S(v)φ dx (18)

Consequently, the eddy viscosity can be expressed in terms of the Poincaré constant C� and
the spectrum of the strain rate tensor S. The eigenvalues of the symmetric matrix S can be
ordered as follows: λ1 ≤ λ2 ≤ λ3. The sum of the eigenvalues is zero, because tr(S) = 0.
Hence, λ1 ≤ 0 and λ3 ≥ 0. The characteristic equation reads λ3 − qλ + r = 0. The three
roots of this cubic equation can be computed analytically:

λ1 = −|S|
√

1

3
cos

(
θ

3

)

λ2 = −|S|
√

1

3
cos

(
θ

3
− 2π

3

)

λ3 = −|S|
√

1

3
cos

(
θ

3
+ 2π

3

)

with

θ = arccos

(
1

2
r
/

√(
1

3
q

)3 )

The eigenvalues must be real-valued, because S is symmetric. The characteristic equation
has three real roots if and only if the invariants q = 1

2 tr(S2) and r = − 1
3 tr(S3) satisfy

27r2 − 4q3 ≤ 0 (19)

Hence, θ ∈ [0,π]. Now suppose that φ in (18) is fully aligned with the eigenvector associ-
ated with λi , with i = 1,2,3. Then, the mean value theorem for integration states that there
exists a point ξi in �� such that

∫

��

φ · S(v)φ dx =
∫

��

λiφ · φ dx = λi(v̂i)

∫

��

φ · φ dx

where λi(v̂i ) = λi(v(ξi, t)). So, with the help of Rayleigh’s principle we obtain from (18)
that νe = C� max{|λ1(v̂1)|, λ3(v̂3)}. This eddy viscosity guarantees that v does not contain
dynamically significant scales of size smaller than �. Therefore, we may assume that v̂i ≈
v ≈ v in ��. Hence, we may replace v̂i by v in the above expression for νe . Notice that
this formally means that higher-order terms are neglected; for instance, we make use of
v = v + O(�2). In this way we get an eddy viscosity depending upon the solution v of (3),

νe(v) = C� max{|λ1(v)|, λ3(v)} = C2
S(θ)�2|S(v)| (20)

where the Smagorinsky coefficient CS becomes a function of θ :

C2
S(θ) = 1

π2
√

3
max

{
cos

(
θ

3

)
,− cos

(
θ

3
+ 2π

3

)}
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It may be emphasized here that the right-hand side is non-negative. The maximum value
of the Smagorinsky coefficient CS becomes CS = 1

π31/4 ≈ 0.24, which is relatively high in
comparison to both empirical fits to DNS results and Lilly’s result, CS = 0.17 [13]. See also
Ref. [14]. This overprediction is caused by the assumed alignment of φ with the eigenfunc-
tion associated with the extreme eigenvalue (the maximum of |λ1| and λ3). The underlying
problem has a likeness with the dynamical behavior of the L2(��) norm of the vorticity. In
the absence of viscosity (Euler equation.), we have

d

dt

∫

��

1

2
‖ω‖2 dx =

∫

��

ω · S(v)ω dx

This immediately implies that growth rate of the L2(��) norm of the vorticity can be
bounded with the help of the extreme eigenvalue max {|λ1|, λ3}, like in (20). If, however,
ω is not taken arbitrary, but constrained to solutions of the incompressible Euler equations
it can be proven rigorously that the middle eigenvalue λ2, and not the extreme eigenvalues
|λ1| and λ3, governs the growth rate of the L2(��) norm of the vorticity, see Theorem 2.2 in
Ref. [9], for example. In case of the Navier-Stokes equations the theory is not developed that
far, but our current knowledge states that the vorticity has a strong tendency to align with
the eigenfunction associated with the middle eigenvalue λ2, see for instance [15]. It may
be noted that we have only considered the case φ = ω here; yet also for φ = δv it can be
concluded that φ cannot be fully aligned with the extreme eigenfunctions of S(v). So, in the-
ory, the estimate (20) can be improved by restricting φ in (18) to solutions of the governing
equations (that is, the vorticity equation if φ = ω and (16) in case φ = δv). The necessary
mathematics is, however, not at hand. Moreover, it is not very likely that theorems about
the alignment of φ and the eigenvectors of S will be proven soon, because that requires a
substantial advancement in the mathematical theory of turbulence.

The discussion above suggests to enlarge our view by letting the eddy viscosity depend on
the directions of the eigenvectors of the strain rate tensor S. Accordingly, the eddy viscosity
changes from a scalar into a second-order tensor. Extending our analysis in that way leads
to the following second-order tensor ±C�E�ET , where � is a diagonal matrix with the
eigenvalues λi as the entries on the main diagonal, and E is the matrix with the associated
(normalized) eigenvectors as column vectors. That is, the eddy viscosity tensor is given
by ±C�S(v). The closure model is then given by τ = ±2C�S2, and the dissipation due
to the closure model becomes ±2C�S2 : S = ∓6C�r . Since we have to take the sign that
leads to the largest amount of dissipation, we arrive at the following condition for the eddy
dissipation:

τ(v) : S(v) = −6C�|r(v)| (21)

This condition states that the dissipation caused by the closure model (the left-hand side) has
to balance the nonlinear transport (the right-hand side) at the scale �. It has been derived
without making any assumptions about the alignment of φ and the eigenvectors of the strain
rate tensor. Rather it is assumed that the eddy viscosity depends on the directions of the
eigenvectors.

Finally it may be noted that the Clark model (that is, the leading-order term in the approx-
imation of uuT − uuT ) does not satisfy (21). Figure 1 suggests that modifying the constant
(1/12) in the Clark model suffices to provide enough dissipation. This is indeed true if r > 0,
i.e., for the case shown in Fig. 1. Yet, the Clark model does not provide sufficient dissipation
in case r < 0, cf. [4]. In particularly, it does not satisfy the stability condition that is con-
sidered in Sect. 3. In other words, the Clark model is unstable with respect to perturbations
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having a length scale smaller than �, see also [16], e.g. Therefore, in practice the Clark
model is always supplemented by an eddy viscosity model, resulting in a so-called mixed
model, see [4] e.g.

5 Towards an Eddy Viscosity Model

Condition (21) is formally derived for a tensorial eddy viscosity model. Nevertheless, we
interpret (21) as an appropriate approximation of the eddy dissipation of a scalar eddy vis-
cosity model too. The dissipation resulting from a scalar eddy viscosity model is given by
τ(v) : S(v) = −2νeS(v) : S(v) = −4νeq(v). Thus, with the help of (21) we get

νe(v) = 3

2
C�

|r(v)|
q(v)

(22)

Here it may be noted that the middle eigenvalue of S can be bounded by |r|/q ≤ |λ2| ≤
3
2 |r|/q; the equality in the upper bound holds if 27r2 = 4q3.

In the derivation of (22) we have assumed that (21) holds (approximately) for a scalar
eddy viscosity model. To test this hypothesis, we will derive the model (22) also differently.
That is, we compute the eddy viscosity νe directly from (14) in case r > 0. For r < 0, we
take

νe(v) = C�

|r(v)|
q(v)

(23)

Now the problem is that we need know how r and q vary within �� to compute r(v) and
q(v). Therefore, we decompose v with the help of the filter into v = v + v′. The residual v′

represents the behavior of the large-eddy solution v within the filter-box ��. This part of
v is needed to compute the eddy viscosity directly from (23), i.e., to compute the ratio of
|r(v)| and q(v). Here, we cannot simply take q(v) = q(v), because the relation between q

and v is nonlinear (similarly for r). This problem is similar to the closure problem in LES,
except that the original closure problem concerns the residual of the Navier-Stokes solution
u, whereas here it is about the residual of the large-eddy solution v. It may be noted that
we can also compute the eddy viscosity directly from (23) provided that the grid is taken
such that the residual v′ is fully resolved numerically. Obviously, this implies that the grid
size is to be taken smaller than the filter width �. Therefore the computational costs will
be higher than usual. This approach is successfully tested for decaying isotropic turbulence
(the Comte-Bellot & Corrsin experiment at Reλ = 71.6 [17]), see Ref. [18] for more details.

Here we apply an approximate deconvolution method that recovers some of the infor-
mation lost in the filtering process, see [19], e.g. To recover an approximation for v′ we
consider the series expansion of v around v. Ignoring terms that are of the order �4, we
get the approximation v′ ≈ − 1

24 �2∇2v. Notice that the deconvolution method is commonly
applied to approximate the subfilter part of the Navier-Stokes solution u, whereas it is used
to approximate the subfilter part of the LES-velocity v here. In homogeneous, isotropic tur-
bulence we have r ∝ Re3/2 and q ∝ Re1/2; hence the ratio of r and q3/2 scales like Re0. This

scaling law suggests to take r(v)/q(v)
3/2 ≈ r(v)/q(v)3/2. Thus (23) leads to

νe ≈ C�

|r(v)|
q(v)3/2

(
q(v)

q(v)

)1/2√
q(v)
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Furthermore with the help of the approximate deconvolution method and the Poincaré in-
equality (6) it can be shown that

q(v) = 1

4
‖∇v‖2 ≈ 1

4

∥∥∥
∥∇

(
v − 1

24
�2∇2v

)∥∥∥
∥

2

(6)≤ 1

4

(
1 + 1

24
�2/C�

)2

‖∇v‖2 = c2q(v)

with c = 1 + π2/24, where the equality-sign holds (once again) if v is fully aligned with
eigenfunction of −∇2 on �� associated with the eigenvalue 1/C�. Since q(v) ≈ q(v) =
q(v) + O(�2) we obtain (in lowest order) the eddy viscosity model given by (22) with the
constant 3

2 replaced by c. Because c ≈ 1.4, we may conclude that the two ways of deriving
(22) yield approximately the same result (i.e., just a slight difference in the constant), which
partially justifies the application of the dissipative condition (21) to a scalar eddy viscosity.

Equation (22) is invariant under rotation of coordinate axis, since it depends on the in-
variants of S(v). The eddy viscosity model (22) can be put into the standard notation (5) by
introducing the relation

C2
S(v) = 3 |r(v)|

4π2
√

q3(v)
(24)

In homogeneous, isotropic turbulence we have C2
S ∝ r/

√
q3 ∝ Re0, i.e., the Smagorinsky

coefficient is (in lowest order) independent of the Reynolds number Re. So, if we average
(24) over the homogeneous directions we obtain an approximately constant coefficient C2

S

that is valid for a wide range of Reynolds numbers (in case of homogeneous, isotropic tur-
bulence). This partially agrees with Smagorinsky’s reasoning, in which C2

S is taken constant
(once again: provided that r ∝ Re3/2 and q ∝ Re1/2).

The invariants of S are constrained by (19). Consequently, (22) yields an eddy viscosity
in the range

0 ≤ νe ≤ 1

2π2
√

3
�2|S|

This shows that the largest value of the Smagorinsky coefficient CS is equal to 1/
√

2π2
√

3 ≈
0.17. Remarkably this maximum value is identical to Lilly’s value, CS = 0.17 [13], which
implies that the standard Smargorinsky model (5) with CS = 0.17 has (more than) sufficient
eddy dissipation. This upper bound was also found in Ref. [14] by means of other reasoning.
Interestingly, the value CS = 0.17 has been found too large in many numerical experiments.
In turbulent shear flow, for instance, the value of the coefficient CS is often reduced to the
relatively low value CS = 0.1 to give the standard model a fair change for success.

6 First Results

In summary, the eddy viscosity model given by (22) has the following properties:
(a) νe = 0 in any (part of the) flow where r = 0, i.e., the eddy viscosity vanishes if the
nonlinear transport to scales < � is absent; hence (b) νe = 0 in any 2D flow; (c) νe = 0
at a wall; (d) νe → 0 if � ∝ Re−3/4; (e) CS ≤ 0.17. It goes without saying that the perfor-
mance of the eddy viscosity model (22) has to be investigated for many cases. As a first
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step it was tested for turbulent channel flow by means of a comparison with direct numeri-
cal simulations. This flow forms a prototype for near-wall turbulence: virtually every LES
has been tested for it. The results are compared to the DNS data of Moser et al. [20] at
Reτ = 590. In fact, we should compare the LES-solution v to the filtered DNS-solution u.
Yet, since the filtered DNS-solution is not presented in Ref. [20] we will compare v directly
to u. The dimensions of the channel are taken identical to those of the DNS of Moser et al.,
i.e., 2π × 2 × π . The computational grid used for the large-eddy simulation consists of 643

points. The DNS was performed on a 384 × 257 × 384 grid, i.e., the DNS uses about 144
times more grid points than the present LES. The LES-results were obtained with an incom-
pressible code that uses a fourth-order, symmetry-preserving, finite-volume discretization.
Details about the numerics can be found in Ref. [21].

The eddy viscosity model given by (22) has been derived for continuous variables. To
start, we imposed Condition (8) on solutions of (3)–(4). This led to (11), see Sect. 2. A dis-
crete representation of (11) may be derived along similar lines. To that end both the PDE’s
(3)–(4) and Condition (8) are to be discretized. The resulting discrete condition may then
be worked out in the manner of the continuous condition, but now in the discrete setting,
yielding a discrete representation of (11). In Sect. 3, we superimposed subfilter-scale pertur-
bations to a solution v of (3)–(4) and required that these perturbations dissipate at a natural
rate. Also, this analysis may be performed for the discrete set of equations. In this way we
obtain a discrete representation of the eddy viscosity model (22). Obviously, the result will
depend on the details of the discretization method that is applied to (3)–(4). Generically,
it will again be of the form given by (22) with q and r replaced by the invariants of the
discrete rate-of-strain tensor, and the Poincaré constant C� replaced by the inverse of the
eigenvalue, corresponding to the scale �, of the discrete approximation of −∇2. To explain
our approximation of the Poincaré constant, we consider a second-order central discretiza-
tion on a uniform grid with spacing dx, dy and dz. The largest eigenvalue of the discrete
approximation of −∇2 is then given by

μmax = 4

dx2
+ 4

dy2
+ 4

dz2

This eigenvalue describes the greatest possible damping in the numerical simulation, i.e.,
it provides a measure for the dissipation at the scale of the grid cell. Hence if we take ��

equal to the grid cell and approximate the smallest eigenvalue of −∇2 on �� by μmax , we
arrive at the following approximate relation:

C� ≈ 1

μmax

(25)

Thus in case dx = dy = dz = h, we get � ≈ h. In case the grid is nonuniform, μmax can
be approximate locally by multiplying the discrete dissipative operator with the mode as-
sociated with the highest frequency that fits on the grid (i.e., the +1,−1,+1 mode). With
the help of (25) we can compute � for a given grid (and discretization of the dissipative
operator −∇2). It may be noted that the resulting relation between � and the grid width
differs from the usual expression � = (dx dy dz)1/3 if the grid is (strongly) nonuniform.

The eddy viscosity model (22) is essentially not more complicated to implement in a
LES-code than the standard Smagorinsky model (with CS constant). Indeed, the model (22)
is expressed in terms of the invariants of the strain rate tensor and does not involve explicit
filtering. The invariant q = 1

4 |S|2 is to be computed in any case; the computation of r is
just as difficult. Unlike the standard Smagorinsky model (even with the relatively low value
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CS = 0.1), the present model showed an appropriate behavior. As can be seen in Fig. 2 both
the mean velocity and the root-mean-square of the fluctuating velocity are in good agreement
with the DNS. To illustrate how much the eddy viscosity model contributes to the quality of
the solution, the mean velocity profile obtained on the 643 LES-grid without closure model
(i.e., νe = 0) is also shown in Fig. 2.

The results shown in Fig. 2 were obtained with �� equal to the grid cell, that is the filter
length � is of roughly the same size as spacing h of the grid. As a result, the eddy viscosity
has been computed such that (1) the corresponding eddy dissipation stops the production
of subgrid (= subfilter) scales; and (2) any subgrid perturbations simply dissipate (decay at
their natural rate); see Sects. 2 and 3, respectively. So, the eddy viscosity ensures that the
subgrid part is dynamically irrelevant, which motivates the choice � ≈ h. On the other hand,
however, it is obvious that with this choice the �-scale in v may not be resolved accurately.
Consequently, the tail of the spectrum of the numerical approximation of v may contain
large discretization errors. In the present case, the tail decays monotonously and there are
no gridpoint-to-gridpoint oscillations (wiggles) observable, i.e., there are no strong signs of
underresolution. In addition the rms-profiles are approximated well.

6.1 Towards a Dynamic Eddy Viscosity Model

Finally, it may be remarked that the model given by (22) can be further simplified with the
help of the constraint (19). With the help of this inequality, we obtain the following upper
bound from (22):

νe ≤ C�

∣
∣∣
∣
1

2
r

∣
∣∣
∣

1/3

(26)

Thus, (the upper bound for) the eddy viscosity is proportional to the geometric mean of the
eigenvalues of the strain rate tensor. For that reason a new dynamic eddy viscosity model
based on

νe ∼ �2|r|1/3 = �2|λ1λ2λ3|1/3

was proposed in Ref. [18]. The model coefficient is computed dynamically using the Ger-
mano identity. This dynamic eddy viscosity model correctly predicts the decay rate for de-
caying isotropic turbulence and the predicted energy spectra are in good agreement with
filtered DNS results. Also, it is tested successfully for the Reτ = 590 channel flow. Details
can be found in Ref. [18].

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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