1,019 research outputs found

    Parvalbumin interneurons are differentially connected to principal cells in inhibitory feedback microcircuits along the dorso-ventral axis of the medial entorhinal cortex

    Get PDF
    The medial entorhinal cortex (mEC) shows a high degree of spatial tuning, predominantly grid cell activity, which is reliant on robust, dynamic inhibition provided by local interneurons (INs). In fact, feedback inhibitory microcircuits involving fast-spiking parvalbumin (PV) basket cells (BCs) are believed to contribute dominantly to the emergence of grid cell firing in principal cells (PrCs). However, the strength of PV BC-mediated inhibition onto PrCs is not uniform in this region, but high in the dorsal and weak in the ventral mEC. This is in good correlation with divergent grid field sizes, but the underlying morphologic and physiological mechanisms remain unknown. In this study, we examined PV BCs in layer (L)2/3 of the mEC characterizing their intrinsic physiology, morphology and synaptic connectivity in the juvenile rat. We show that while intrinsic physiology and morphology are broadly similar over the dorsoventral axis, PV BCs form more connections onto local PrCs in the dorsal mEC, independent of target cell type. In turn, the major PrC subtypes, pyramidal cell (PC) and stellate cell (SC), form connections onto PV BCs with lower, but equal probability. These data thus identify inhibitory connectivity as source of the gradient of inhibition, plausibly explaining divergent grid field formation along this dorsoventral axis of the mEC

    Defective synapse maturation and enhanced synaptic plasticity in Shank2 Δex7(-/-) mice

    Get PDF
    Autism spectrum disorders (ASDs) are neurodevelopmental disorders with a strong genetic etiology. Since mutations in human SHANK genes have been found in patients with autism, genetic mouse models are used for a mechanistic understanding of ASDs and the development of therapeutic strategies. SHANKs are scaffold proteins in the postsynaptic density of mammalian excitatory synapses with proposed functions in synaptogenesis, regulation of dendritic spine morphology, and instruction of structural synaptic plasticity. In contrast to all studies so far on the function of SHANK proteins, we have previously observed enhanced synaptic plasticity in Shank2 Δex7(-/-) mice. In a series of experiments, we now reproduce these results, further explore the synaptic phenotype, and directly compare our model to the independently generated Shank2 Δex6-7(-/-) mice. Minimal stimulation experiments reveal that Shank2 Δex7(-/-) mice possess an excessive fraction of silent (i.e., α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, short, AMPA receptor lacking) synapses. The synaptic maturation deficit emerges during the third postnatal week and constitutes a plausible mechanistic explanation for the mutants' increased capacity for long-term potentiation, both in vivo and in vitro. A direct comparison with Shank2 Δex6-7(-/-) mice adds weight to the hypothesis that both mouse models show a different set of synaptic phenotypes, possibly due to differences in their genetic background. These findings add to the diversity of synaptic phenotypes in neurodevelopmental disorders and further support the supposed existence of "modifier genes" in the expression and inheritance of ASDs

    All-optical ion generation for ion trap loading

    Full text link
    We have investigated the all-optical generation of ions by photo-ionisation of atoms generated by pulsed laser ablation. A direct comparison between a resistively heated oven source and pulsed laser ablation is reported. Pulsed laser ablation with 10 ns Nd:YAG laser pulses is shown to produce large calcium flux, corresponding to atomic beams produced with oven temperatures greater than 650 K. For an equivalent atomic flux, pulsed laser ablation is shown to produce a thermal load more than one order of magnitude smaller than the oven source. The atomic beam distributions obey Maxwell-Boltzmann statistics with most probable speeds corresponding to temperatures greater than 2200 K. Below a threshold pulse fluence between 280 mJ/cm^2 and 330 mJ/cm^2, the atomic beam is composed exclusively of ground state atoms. For higher fluences ions and excited atoms are generated.Comment: 7 pages, 9 figure

    The synaptic scaffold protein MPP2 interacts with GABA(A) receptors at the periphery of the postsynaptic density of glutamatergic synapses

    Get PDF
    Recent advances in imaging technology have highlighted that scaffold proteins and receptors are arranged in subsynaptic nanodomains. The synaptic membrane-associated guanylate kinase (MAGUK) scaffold protein membrane protein palmitoylated 2 (MPP2) is a component of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-associated protein complexes and also binds to the synaptic cell adhesion molecule SynCAM 1. Using superresolution imaging, we show that-like SynCAM 1-MPP2 is situated at the periphery of the postsynaptic density (PSD). In order to explore MPP2-associated protein complexes, we used a quantitative comparative proteomics approach and identified multiple γ-aminobutyric acid (GABA)(A) receptor subunits among novel synaptic MPP2 interactors. In line with a scaffold function for MPP2 in the assembly and/or modulation of intact GABA(A) receptors, manipulating MPP2 expression had effects on inhibitory synaptic transmission. We further show that GABA(A) receptors are found together with MPP2 in a subset of dendritic spines and thus highlight MPP2 as a scaffold that serves as an adaptor molecule, linking peripheral synaptic elements critical for inhibitory regulation to central structures at the PSD of glutamatergic synapses

    Parton coalescence at RHIC

    Get PDF
    Using a covariant coalescence model, we study hadron production in relativistic heavy ion collisions from both soft partons in the quark-gluon plasma and hard partons in minijets. Including transverse flow of soft partons and independent fragmentation of minijet partons, the model is able to describe available experimental data on pion, kaon, and antiproton spectra. The resulting antiproton to pion ratio is seen to increase at low transverse momenta and reaches a value of about one at intermediate transverse momenta, as observed in experimental data at RHIC. A similar dependence of the antikaon to pion ratio on transverse momentum is obtained, but it reaches a smaller value at intermediate transverse momenta. At high transverse momenta, the model predicts that both the antiproton to pion and the antikaon to pion ratio decrease and approach those given by the perturbative QCD. Both collective flow effect and coalescence of minijet partons with partons in the quark-gluon plasma affect significantly the spectra of hadrons with intermediate transverse momenta. Elliptic flows of protons, Lambdas, and Omegas have also been evaluated from partons with elliptic flows extracted from fitting measured pion and kaon elliptic flows, and they are found to be consistent with available experimental data.Comment: 12 pages, 11 figure

    Pion, kaon, proton and anti-proton transverse momentum distributions from p+p and d+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Full text link
    Identified mid-rapidity particle spectra of π±\pi^{\pm}, K±K^{\pm}, and p(pˉ)p(\bar{p}) from 200 GeV p+p and d+Au collisions are reported. A time-of-flight detector based on multi-gap resistive plate chamber technology is used for particle identification. The particle-species dependence of the Cronin effect is observed to be significantly smaller than that at lower energies. The ratio of the nuclear modification factor (RdAuR_{dAu}) between protons (p+pˉ)(p+\bar{p}) and charged hadrons (hh) in the transverse momentum range 1.2<pT<3.01.2<{p_{T}}<3.0 GeV/c is measured to be 1.19±0.051.19\pm0.05(stat)±0.03\pm0.03(syst) in minimum-bias collisions and shows little centrality dependence. The yield ratio of (p+pˉ)/h(p+\bar{p})/h in minimum-bias d+Au collisions is found to be a factor of 2 lower than that in Au+Au collisions, indicating that the Cronin effect alone is not enough to account for the relative baryon enhancement observed in heavy ion collisions at RHIC.Comment: 6 pages, 4 figures, 1 table. We extended the pion spectra from transverse momentum 1.8 GeV/c to 3. GeV/

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
    corecore