128 research outputs found

    Validity and Reliability of Dermoscopic Criteria Used to Differentiate Nevi From Melanoma: A Web-Based International Dermoscopy Society Study.

    Get PDF
    IMPORTANCE: The comparative diagnostic performance of dermoscopic algorithms and their individual criteria are not well studied. OBJECTIVES: To analyze the discriminatory power and reliability of dermoscopic criteria used in melanoma detection and compare the diagnostic accuracy of existing algorithms. DESIGN, SETTING, AND PARTICIPANTS: This was a retrospective, observational study of 477 lesions (119 melanomas [24.9%] and 358 nevi [75.1%]), which were divided into 12 image sets that consisted of 39 or 40 images per set. A link on the International Dermoscopy Society website from January 1, 2011, through December 31, 2011, directed participants to the study website. Data analysis was performed from June 1, 2013, through May 31, 2015. Participants included physicians, residents, and medical students, and there were no specialty-type or experience-level restrictions. Participants were randomly assigned to evaluate 1 of the 12 image sets. MAIN OUTCOMES AND MEASURES: Associations with melanoma and intraclass correlation coefficients (ICCs) were evaluated for the presence of dermoscopic criteria. Diagnostic accuracy measures were estimated for the following algorithms: the ABCD rule, the Menzies method, the 7-point checklist, the 3-point checklist, chaos and clues, and CASH (color, architecture, symmetry, and homogeneity). RESULTS: A total of 240 participants registered, and 103 (42.9%) evaluated all images. The 110 participants (45.8%) who evaluated fewer than 20 lesions were excluded, resulting in data from 130 participants (54.2%), 121 (93.1%) of whom were regular dermoscopy users. Criteria associated with melanoma included marked architectural disorder (odds ratio [OR], 6.6; 95% CI, 5.6-7.8), pattern asymmetry (OR, 4.9; 95% CI, 4.1-5.8), nonorganized pattern (OR, 3.3; 95% CI, 2.9-3.7), border score of 6 (OR, 3.3; 95% CI, 2.5-4.3), and contour asymmetry (OR, 3.2; 95% CI, 2.7-3.7) (P < .001 for all). Most dermoscopic criteria had poor to fair interobserver agreement. Criteria that reached moderate levels of agreement included comma vessels (ICC, 0.44; 95% CI, 0.40-0.49), absence of vessels (ICC, 0.46; 95% CI, 0.42-0.51), dark brown color (ICC, 0.40; 95% CI, 0.35-0.44), and architectural disorder (ICC, 0.43; 95% CI, 0.39-0.48). The Menzies method had the highest sensitivity for melanoma diagnosis (95.1%) but the lowest specificity (24.8%) compared with any other method (P < .001). The ABCD rule had the highest specificity (59.4%). All methods had similar areas under the receiver operating characteristic curves. CONCLUSIONS AND RELEVANCE: Important dermoscopic criteria for melanoma recognition were revalidated by participants with varied experience. Six algorithms tested had similar but modest levels of diagnostic accuracy, and the interobserver agreement of most individual criteria was poor

    Validity and reliability of dermoscopic criteria used to differentiate nevi from melanoma aweb-based international dermoscopy society study

    Get PDF
    IMPORTANCE The comparative diagnostic performance of dermoscopic algorithms and their individual criteria are not well studied. OBJECTIVES To analyze the discriminatory power and reliability of dermoscopic criteria used in melanoma detection and compare the diagnostic accuracy of existing algorithms. DESIGN, SETTING, AND PARTICIPANTS Thiswas a retrospective, observational study of 477 lesions (119 melanomas [24.9%] and 358 nevi [75.1%]), which were divided into 12 image sets that consisted of 39 or 40 images per set. A link on the International Dermoscopy Society website from January 1, 2011, through December 31, 2011, directed participants to the study website. Data analysis was performed from June 1, 2013, through May 31, 2015. Participants included physicians, residents, and medical students, and there were no specialty-Type or experience-level restrictions. Participants were randomly assigned to evaluate 1 of the 12 image sets. MAIN OUTCOMES AND MEASURES Associations with melanoma and intraclass correlation coefficients (ICCs) were evaluated for the presence of dermoscopic criteria. Diagnostic accuracy measures were estimated for the following algorithms: The ABCD rule, the Menzies method, the 7-point checklist, the 3-point checklist, chaos and clues, and CASH (color, architecture, symmetry, and homogeneity). RESULTS A total of 240 participants registered, and 103 (42.9%) evaluated all images. The 110 participants (45.8%) who evaluated fewer than 20 lesions were excluded, resulting in data from 130 participants (54.2%), 121 (93.1%) of whom were regular dermoscopy users. Criteria associated with melanoma included marked architectural disorder (odds ratio [OR], 6.6; 95%CI, 5.6-7.8), pattern asymmetry (OR, 4.9; 95%CI, 4.1-5.8), nonorganized pattern (OR, 3.3; 95%CI, 2.9-3.7), border score of 6 (OR, 3.3; 95%CI, 2.5-4.3), and contour asymmetry (OR, 3.2; 95%CI, 2.7-3.7) (P &lt; .001 for all). Most dermoscopic criteria had poor to fair interobserver agreement. Criteria that reached moderate levels of agreement included comma vessels (ICC, 0.44; 95%CI, 0.40-0.49), absence of vessels (ICC, 0.46; 95%CI, 0.42-0.51), dark brown color (ICC, 0.40; 95%CI, 0.35-0.44), and architectural disorder (ICC, 0.43; 95%CI, 0.39-0.48). The Menziesmethod had the highest sensitivity for melanoma diagnosis (95.1%) but the lowest specificity (24.8%) compared with any other method (P &lt; .001). The ABCD rule had the highest specificity (59.4%). All methods had similar areas under the receiver operating characteristic curves. CONCLUSIONS AND RELEVANCE Important dermoscopic criteria for melanoma recognition were revalidated by participants with varied experience. Six algorithms tested had similar but modest levels of diagnostic accuracy, and the interobserver agreement of most individual criteria was poor

    Comparison of Airway Intubation Devices When Using a Biohazard Suit: A Feasibility Study

    Get PDF
    OBJECTIVES: We set out to compare emergency medicine residents\u27 intubating times and success rates for direct laryngoscopy (DL), GlideScope-assisted intubation (GS), and the Supraglottic Airway Laryngopharyngeal Tube (SALT) airway with and without biohazard gear. METHODS: Each resident passed through 2 sets of 3 testing stations (DL, GS, SALT) in succession, intubating Laerdal mannequin heads with the 3 modalities after randomization to start with or without biohazard gear. RESULTS: Thirty-seven residents participated, and 27 were male (73%); 14 (37.8%) had prior experience intubating in biohazard suits. There was a statistically significant difference in those who had prior intubation experience between DL (37, 100%), GS (32, 86.5%), and SALT (12, 32.4%) (P \u3c .001) and in median time to intubation (48 seconds, no suit; 57 seconds, with suits) (P = .03). There was no statistically significant difference between the overall times to intubate for the 3 devices. First-pass success was highest for DL (91.2%, no suit; 83.7%, suit) followed by GS (89%, no suit; 78.3%, suit) and SALT (51%, no suit; 67.6%, suit). CONCLUSION: A minority of participants had prior experience intubating in biohazard suits. Use of biohazard suits extends time to successful intubation. There was no difference in time to intubation for the 3 devices, but first-pass success was highest for DL (with or without biohazard gear)

    Brazilian Consensus on Photoprotection

    Full text link

    Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures

    Get PDF
    Funder: 2017 SGR 329 Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706)Funder: This article is based upon work from COST Action StableNextSol MP1307 supported by COST (European Cooperation in Science and Technology). M. V. K., E. A. K., V. B., and A. Osherov thank the financial support of the United States – Israel Binational Science Foundation (grant no. 2015757). E. A. K., A. A., and I. V.-F. acknowledge a partial support from the SNaPSHoTs project in the framework of the German-Israeli bilateral R&D cooperation in the field of applied nanotechnology. M. S. L. thanks the financial support of NSF (ECCS, award #1610833). S. C., M. Manceau and M. Matheron thank the financial support of European Union’s Horizon 2020 research and innovation programme under grant agreement No 763989 (APOLO project). F. De R. and T. M. W. would like to acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) through the SPECIFIC Innovation and Knowledge Centre (EP/N020863/1) and express their gratitude to the Welsh Government for their support of the Ser Solar programme. P. A. T. acknowledges financial support from Russian Science Foundation (project No. 19-73-30020). J.K. acknowledges the support by the Solar Photovoltaic Academic Research Consortium II (SPARC II) project, gratefully funded by WEFO. M.K.N. acknowledges financial support from Innosuisse project 25590.1 PFNM-NM, Solaronix, Aubonne, Switzerland. C.-Q. M. would like to acknowledge The Bureau of International Cooperation of Chinese Academy of Sciences for the support of ISOS11 and the Ministry of Science and Technology of China for the financial support (No 2016YFA0200700). N.G.P. acknowledges financial support from the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT Future Planning (MSIP) of Korea under contracts NRF-2012M3A6A7054861 and NRF-2014M3A6A7060583 (Global Frontier R&D Program on Center for Multiscale Energy System). CSIRO’s contribution to this work was conducted with funding support from the Australian Renewable Energy Agency (ARENA) through its Advancing Renewables Program. A. F. N gratefully acknowledges support from FAPESP (Grant 2017/11986-5) and Shell and the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. Y.-L.L. and Q.B. acknowledge support from the National Science Foundation Division of Civil, Mechanical and Manufacturing Innovation under award #1824674. S.D.S. acknowledges the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement No. 756962), and the Royal Society and Tata Group (UF150033). The work at the National Renewable Energy Laboratory was supported by the U.S. Department of Energy (DOE) under contract DE-AC36-08GO28308 with Alliance for Sustainable Energy LLC, the manager and operator of the National Renewable Energy Laboratory. The authors (J.J.B, J.M.L., M.O.R, K.Z.) acknowledge support from the De-risking halide perovskite solar cells program of the National Center for Photovoltaics, funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technology Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. H.J.S. acknowledges the support of EPSRC UK, Engineering and Physical Sciences Research Council. V.T. and M. Madsen acknowledges ‘Villum Foundation’ for funding of the project CompliantPV, under project number 13365. M. Madsen acknowledges Danmarks Frie Forskningsfond, DFF FTP for funding of the project React-PV, No. 8022-00389B. M.G. and S.M.Z. thank the King Abdulaziz City for Science and technology (KACST) for financial support. S.V. acknowledges TKI-UE/Ministry of Economic Affairs for financial support of the TKI-UE toeslag project POP-ART (No. 1621103). M.L.C. and H.X. acknowledges the support from Spanish MINECO for the grant GraPErOs (ENE2016-79282-C5-2-R), the OrgEnergy Excellence Network CTQ2016-81911- REDT, the Agència de Gestiód'Ajuts Universitaris i de Recerca (AGAUR) for the support to the consolidated Catalonia research group 2017 SGR 329 and the Xarxa de Referència en Materials Avançats per a l'Energia (Xarmae). ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme / Generalitat de Catalunya.Abstract: Improving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis

    Low-loss High Entropy Relaxor-like Ferroelectrics with A-site Disorder

    No full text
    Relaxor ferroelectric ceramics are good candidates for capacitor, sensor and actuator applications because of their high dielectric permittivity, high piezoelectric constant and high value of field induced strain, respectively. However, their dielectric loss is usually relatively high, which is a problem for actual applications. The introduction of the high entropy concept opens up the possibility of developing new multi-element relaxor-like ferroelectric materials with short-range ordered polar structures having short relaxation times to decrease their loss. Here we present a new high entropy A-site disordered perovskite (Pb0.25Ba0.25Sr0.25Ca0.25)TiO3 relaxor-like ferroelectric. Moreover, the ceramic has low loss (<0.015) from room temperature to 125 °C. The relaxor-like nature of the material is proved by dielectric and ferroelectric measurements. This work demonstrates the great potential of high entropy perovskites as relaxor-like ferroelectrics with a wide compositional window for tuning their properties for different applications
    corecore