172 research outputs found

    Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode Xiphinema index involves priming of defence gene responses in grapevine

    Get PDF
    The ectoparasitic dagger nematode (Xiphinema index), vector of Grapevine fanleaf virus (GFLV), provokes gall formation and can cause severe damage to the root system of grapevines. Mycorrhiza formation by Glomus (syn. Rhizophagus) intraradices BEG141 reduced both gall formation on roots of the grapevine rootstock SO4 (Vitis berlandieri×V. riparia) and nematode number in the surrounding soil. Suppressive effects increased with time and were greater when the nematode was post-inoculated rather than co-inoculated with the arbuscular mycorrhizal (AM) fungus. Using a split-root system, decreased X. index development was shown in mycorrhizal and non-mycorrhizal parts of mycorrhizal root systems, indicating that both local and systemic induced bioprotection mechanisms were active against the ectoparasitic nematode. Expression analyses of ESTs (expressed sequence tags) generated in an SSH (subtractive suppressive hybridization) library, representing plant genes up-regulated during mycorrhiza-induced control of X. index, and of described grapevine defence genes showed activation of chitinase 1b, pathogenesis-related 10, glutathione S-transferase, stilbene synthase 1, 5-enolpyruvyl shikimate-3-phosphate synthase, and a heat shock proein 70-interacting protein in association with the observed local and/or systemic induced bioprotection against the nematode. Overall, the data suggest priming of grapevine defence responses by the AM fungus and transmission of a plant-mediated signal to non-mycorrhizal tissues. Grapevine gene responses during AM-induced local and systemic bioprotection against X. index point to biological processes that are related either to direct effects on the nematode or to protection against nematode-imposed stress to maintain root tissue integrity

    Impacts of long‐term elevated atmospheric CO₂ concentrations on communities of arbuscular mycorrhizal fungi

    Get PDF
    The ecological impacts of long‐term elevated atmospheric CO₂ (eCO₂) levels on soil microbiota remain largely unknown. This is particularly true for the arbuscular mycorrhizal (AM) fungi, which form mutualistic associations with over two‐thirds of terrestrial plant species and are entirely dependent on their plant hosts for carbon. Here, we use high‐resolution amplicon sequencing (Illumina, HiSeq) to quantify the response of AM fungal communities to the longest running (>15 years) free‐air carbon dioxide enrichment (FACE) experiment in the Northern Hemisphere (GiFACE); providing the first evaluation of these responses from old‐growth (>100 years) semi‐natural grasslands subjected to a 20% increase in atmospheric CO₂. eCO₂ significantly increased AM fungal richness but had a less‐pronounced impact on the composition of their communities. However, while broader changes in community composition were not observed, more subtle responses of specific AM fungal taxa were with populations both increasing and decreasing in abundance in response to eCO₂. Most population‐level responses to eCO₂ were not consistent through time, with a significant interaction between sampling time and eCO₂ treatment being observed. This suggests that the temporal dynamics of AM fungal populations may be disturbed by anthropogenic stressors. As AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in population densities in response to eCO₂ may significantly impact terrestrial plant communities and their productivity. Thus, predictions regarding future terrestrial ecosystems must consider changes both aboveground and belowground, but avoid relying on broad‐scale community‐level responses of soil microbes observed on single occasions

    Hypericin and pseudohypericin concentrations of a valuable medicinal plant Hypericum perforatum L. are enhanced by arbuscular mycorrhizal fungi

    Get PDF
    Hypericum perforatum L. (St. John’s-wort, Hypericaceae) is a valuable medicinal plant species cultivated for pharmaceutical purposes. Although the chemical composition and pharmacological activities of H. perforatum have been well studied, no data are available concerning the influence of arbuscular mycorrhizal fungi (AMF) on this important herb. A laboratory experiment was therefore conducted in order to test three AMF inocula on H. perforatum with a view to show whether AMF could influence plant vitality (biomass and photosynthetic activity) and the production of the most valuable secondary metabolites, namely anthraquinone derivatives (hypericin and pseudohypericin) as well as the prenylated phloroglucinol—hyperforin. The following treatments were prepared: (1) control—sterile soil without AMF inoculation, (2) Rhizophagus intraradices (syn. Glomus intraradices), (3) Funneliformis mosseae (syn. Glomus mosseae), and (4) an AMF Mix which contained: Funneliformis constrictum (syn. Glomus constrictum), Funneliformis geosporum (syn. Glomus geosporum), F. mosseae, and R. intraradices. The application of R. intraradices inoculum resulted in the highest mycorrhizal colonization, whereas the lowest values of mycorrhizal parameters were detected in the AMF Mix. There were no statistically significant differences in H. perforatum shoot mass in any of the treatments. However, we found AMF species specificity in the stimulation of H. perforatum photosynthetic activity and the production of secondary metabolites. Inoculation with the AMF Mix resulted in higher photosynthetic performance index (PItotal) values in comparison to all the other treatments. The plants inoculated with R. intraradices and the AMF Mix were characterized by a higher concentration of hypericin and pseudohypericin in the shoots. However, no differences in the content of these metabolites were detected after the application of F. mosseae. In the case of hyperforin, no significant differences were found between the control plants and those inoculated with any of the AMF applied. The enhanced content of anthraquinone derivatives and, at the same time, better plant vitality suggest that the improved production of these metabolites was a result of the positive effect of the applied AMF strains on H. perforatum. This could be due to improved mineral nutrition or to AMF-induced changes in the phytohormonal balance. Our results are promising from the biotechnological point of view, i.e. the future inoculation of H. perforatum with AMF in order to improve the quality of medicinal plant raw material obtained from cultivation

    Effects of Heavy Metals and Arbuscular Mycorrhiza on the Leaf Proteome of a Selected Poplar Clone: A Time Course Analysis

    Get PDF
    Arbuscular mycorrhizal (AM) fungi establish a mutualistic symbiosis with the roots of most plant species. While receiving photosynthates, they improve the mineral nutrition of the plant and can also increase its tolerance towards some pollutants, like heavy metals. Although the fungal symbionts exclusively colonize the plant roots, some plant responses can be systemic. Therefore, in this work a clone of Populus alba L., previously selected for its tolerance to copper and zinc, was used to investigate the effects of the symbiosis with the AM fungus Glomus intraradices on the leaf protein expression. Poplar leaf samples were collected from plants maintained in a glasshouse on polluted (copper and zinc contaminated) or unpolluted soil, after four, six and sixteen months of growth. For each harvest, about 450 proteins were reproducibly separated on 2DE maps. At the first harvest the most relevant effect on protein modulation was exerted by the AM fungi, at the second one by the metals, and at the last one by both treatments. This work demonstrates how importantly the time of sampling affects the proteome responses in perennial plants. In addition, it underlines the ability of a proteomic approach, targeted on protein identification, to depict changes in a specific pattern of protein expression, while being still far from elucidating the biological function of each protein

    Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots

    Get PDF
    A microarray carrying 5,648 probes of Medicago truncatula root-expressed genes was screened in order to identify those that are specifically regulated by the arbuscular mycorrhizal (AM) fungus Gigaspora rosea, by Pi fertilisation or by the phytohormones abscisic acid and jasmonic acid. Amongst the identified genes, 21% showed a common induction and 31% a common repression between roots fertilised with Pi or inoculated with the AM fungus G. rosea, while there was no obvious overlap in the expression patterns between mycorrhizal and phytohormone-treated roots. Expression patterns were further studied by comparing the results with published data obtained from roots colonised by the AM fungi Glomus mosseae and Glomus intraradices, but only very few genes were identified as being commonly regulated by all three AM fungi. Analysis of Pi concentrations in plants colonised by either of the three AM fungi revealed that this could be due to the higher Pi levels in plants inoculated by G. rosea compared with the other two fungi, explaining that numerous genes are commonly regulated by the interaction with G. rosea and by phosphate. Differential gene expression in roots inoculated with the three AM fungi was further studied by expression analyses of six genes from the phosphate transporter gene family in M. truncatula. While MtPT4 was induced by all three fungi, the other five genes showed different degrees of repression mirroring the functional differences in phosphate nutrition by G. rosea, G. mosseae and G. intraradices

    Arbuscular mycorrhizal colonisation of roots of grass species differing in invasiveness

    Get PDF
    Recent research indicates that the soil microbial community, particularly arbuscular mycorrhizal fungi (AMF), can influence plant invasion in several ways. We tested if 1) invasive species are colonised by AMF to a lower degree than resident native species, and 2) AMF colonisation of native plants is lower in a community inhabited by an invasive species than in an uninvaded resident community. The two tests were run in semiarid temperate grasslands on grass (Poaceae) species, and the frequency and intensity of mycorrhizal colonisation, and the proportion of arbuscules and vesicles in plant roots have been measured. In the first test, grasses representing three classes of invasiveness were included: invasive species, resident species becoming abundant upon disturbance, and non-invasive native species. Each class contained one C3 and one C4 species. The AMF colonisation of the invasive Calamagrostis epigejos and Cynodon dactylon was consistently lower than that of the non-invasive native Chrysopogon gryllus and Bromus inermis, and contained fewer arbuscules than the post-disturbance dominant resident grasses Bothriochloa ischaemum and Brachypodium pinnatum. The C3 and C4 grasses behaved alike despite their displaced phenologies in these habitats. The second test compared AMF colonisation for sand grassland dominant grasses Festuca vaginata and Stipa borysthenica in stands invaded by either C. epigejos or C. dactylon, and in the uninvaded natural community. Resident grasses showed lower degree of AMF colonisation in the invaded stand compared to the uninvaded natural community with F. vaginata responding so to both invaders, while S. borysthenica responding to C. dactylon only. These results indicate that invasive grasses supposedly less reliant on AMF symbionts have the capacity of altering the soil mycorrhizal community in such a way that resident native species can establish a considerably reduced extent of the beneficial AMF associations, hence their growth, reproduction and ultimately abundance may decline. Accumulating evidence suggests that such indirect influences of invasive alien plants on resident native species mediated by AMF or other members of the soil biota is probably more the rule than the exception

    The Nuclear Protein Sge1 of Fusarium oxysporum Is Required for Parasitic Growth

    Get PDF
    Dimorphism or morphogenic conversion is exploited by several pathogenic fungi and is required for tissue invasion and/or survival in the host. We have identified a homolog of a master regulator of this morphological switch in the plant pathogenic fungus Fusarium oxysporum f. sp. lycopersici. This non-dimorphic fungus causes vascular wilt disease in tomato by penetrating the plant roots and colonizing the vascular tissue. Gene knock-out and complementation studies established that the gene for this putative regulator, SGE1 (SIX Gene Expression 1), is essential for pathogenicity. In addition, microscopic analysis using fluorescent proteins revealed that Sge1 is localized in the nucleus, is not required for root colonization and penetration, but is required for parasitic growth. Furthermore, Sge1 is required for expression of genes encoding effectors that are secreted during infection. We propose that Sge1 is required in F. oxysporum and other non-dimorphic (plant) pathogenic fungi for parasitic growth

    Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia

    Get PDF
    The main objective of this study was to shed light on the previously unknown arbuscular mycorrhizal fungal (AMF) communities in Southern Arabia. We explored AMF communities in two date palm (Phoenix dactylifera) plantations and the natural vegetation of their surrounding arid habitats. The plantations were managed traditionally in an oasis and according to conventional guidelines at an experimental station. Based on spore morphotyping, the AMF communities under the date palms appeared to be quite diverse at both plantations and more similar to each other than to the communities under the ruderal plant, Polygala erioptera, growing at the experimental station on the dry strip between the palm trees, and to the communities uncovered under the native vegetation (Zygophyllum hamiense, Salvadora persica, Prosopis cineraria, inter-plant area) of adjacent undisturbed arid habitat. AMF spore abundance and species richness were higher under date palms than under the ruderal and native plants. Sampling in a remote sand dune area under Heliotropium kotschyi yielded only two AMF morphospecies and only after trap culturing. Overall, 25 AMF morphospecies were detected encompassing all study habitats. Eighteen belonged to the genus Glomus including four undescribed species. Glomus sinuosum, a species typically found in undisturbed habitats, was the most frequently occurring morphospecies under the date palms. Using molecular tools, it was also found as a phylogenetic taxon associated with date palm roots. These roots were associated with nine phylogenetic taxa, among them eight from Glomus group A, but the majority could not be assigned to known morphospecies or to environmental sequences in public databases. Some phylogenetic taxa seemed to be site specific. Despite the use of group-specific primers and efficient trapping systems with a bait plant consortium, surprisingly, two of the globally most frequently found species, Glomus intraradices and Glomus mosseae, were not detected neither as phylogenetic taxa in the date palm roots nor as spores under the date palms, the intermediate ruderal plant, or the surrounding natural vegetation. The results highlight the uniqueness of AMF communities inhabiting these diverse habitats exposed to the harsh climatic conditions of Southern Arabia
    corecore