9,672 research outputs found
Periodic ripples in suspended graphene
We study the mechanism of wrinkling of suspended graphene, by means of
atomistic simulations. We argue that the structural instability under edge
compression is the essential physical reason for the formation of periodic
ripples in graphene. The ripple wavelength and out-of-plane amplitude are found
to obey 1/4-power scaling laws with respect to edge compression. Our results
also show that parallel displacement of the clamped boundaries can induce
periodic ripples, with oscillation amplitude roughly proportional to the 1/4
power of edge displacement. The results are fundamental to graphene's
applications in electronics.Comment: 5 Figure
How Stress Can Reduce Dissipation in Glasses
We propose that stress can decrease the internal friction of amorphous
solids, either by increasing the potential barriers of defects, thus reducing
their tunneling and thermal activation that produce loss, or by decreasing the
coupling between defects and phonons. This stress can be from impurities,
atomic bonding constraints, or externally applied stress. Externally applied
stress also reduces mechanical loss through dissipation dilution. Our results
are consistent with the experiments, and predict that stress could
substantially reduce dielectric loss and increase the thermal conductivity.Comment: 9 pages, 7 figure
Pseudomagnetic fields and ballistic transport in a suspended graphene sheet
We study a suspended graphene sheet subject to the electric field of a gate
underneath. We compute the elastic deformation of the sheet and the
corresponding effective gauge field, which modifies the electronic transport.
In a clean system the two-terminal conductance of the sample is reduced below
the ballistic limit and is almost totally suppressed at low carrier
concentrations in samples under tension. Residual disorder restores a small
finite conductivity.Comment: 4 page
Modeling the buckling and delamination of thin films
I study numerically the problem of delamination of a thin film elastically
attached to a rigid substrate. A nominally flat elastic thin film is modeled
using a two-dimensional triangular mesh. Both compression and bending
rigidities are included to simulate compression and bending of the film. The
film can buckle (i.e., abandon its flat configuration) when enough compressive
strain is applied. The possible buckled configurations of a piece of film with
stripe geometry are investigated as a function of the compressive strain. It is
found that the stable configuration depends strongly on the applied strain and
the Poisson ratio of the film. Next, the film is considered to be attached to a
rigid substrate by springs that can break when the detaching force exceeds a
threshold value, producing the partial delamination of the film. Delamination
is induced by a mismatch of the relaxed configurations of film and substrate.
The morphology of the delaminated film can be followed and compared with
available experimental results as a function of model parameters.
`Telephone-cord', polygonal, and `brain-like' patterns qualitatively similar to
experimentally observed configurations are obtained in different parameter
regions. The main control parameters that select the different patterns are the
mismatch between film and substrate and the degree of in-plane relaxation
within the unbuckled regions.Comment: 8 pages, 10 figure
Prescribed pattern transformation in swelling gel tubes by elastic instability
We present a study on swelling-induced circumferential buckling of tubular
shaped gels. Inhomogeneous stress develops as gel swells under mechanical
constraints, which gives rise to spontaneous buckling instability without
external force. Full control over the post-buckling pattern is experimentally
demonstrated. A simple analytical model is developed using elastic energy to
predict stability and post-buckling patterns upon swelling. Analysis reveals
that height to diameter ratio is the most critical design parameter to
determine buckling pattern, which agrees well with experimental and numerical
results.Comment: 32 pages, 7 figure
Wrapping an adhesive sphere with a sheet
We study the adhesion of an elastic sheet on a rigid spherical substrate.
Gauss'Theorema Egregium shows that this operation necessarily generates metric
distortions (i.e. stretching) as well as bending. As a result, a large variety
of contact patterns ranging from simple disks to complex branched shapes are
observed as a function of both geometrical and material properties. We describe
these different morphologies as a function of two non-dimensional parameters
comparing respectively bending and stretching energies to adhesion. A complete
configuration diagram is finally proposed
Flexoelectric effect in finite samples
Static flexoelectric effect in a finite sample of a solid is addressed in
terms of phenomenological theory for the case of a thin plate subjected to
bending. It has been shown that despite an explicit asymmetry inherent to the
bulk constitutive electromechanical equations which take into account the
flexoelectric coupling, the electromechanical response for a finite sample is
"symmetric". "Symmetric" means that if a sensor and an actuator are made of a
flexoelectric element, performance of such devices can be characterized by the
same effective piezoelectric coefficient. This behavior is consistent with the
thermodynamic arguments offered earlier, being in conflict with the current
point of view on the matter in literature. This result was obtained using
standard mechanical boundary conditions valid for the case where the
polarization vanishes at the surface. It was shown that, for the case where
there is the polarization is nonzero at the surface, the aforementioned
symmetry of electromechanical response may be violated if standard mechanical
boundary conditions are used, leading to a conflict with the thermodynamic
arguments. It was argued that this conflict may be resolved when using modified
mechanical boundary conditions. It was also shown that the contribution of
surface piezoelectricity to the flexoelectric response of a finite sample is
expected to be comparable to that of the static bulk contribution (including
the material with high values of the dielectric constant) and to scale as the
bulk value of the dielectric constant (similar to the bulk contribution). This
finding implies that if the experimentally measured flexoelectric coefficient
scales as the dielectric constant of the material, this does not imply that the
measured flexoelectric response is controlled by the static bulk contribution
to the flexoelectric effect
Mechanical properties of carbynes investigated by ab initio total-energy calculations
As sp carbon chains (carbynes) are relatively rigid molecular objects, can we
exploit them as construction elements in nanomechanics? To answer this
question, we investigate their remarkable mechanical properties by ab-initio
total-energy simulations. In particular, we evaluate their linear response to
small longitudinal and bending deformations and their failure limits for
longitudinal compression and elongation.Comment: 6 pages, 4 figures, 1 tabl
- …
