14,013 research outputs found

    Green cities and health: a question of scale?

    Get PDF
    <p><b>Background:</b> Cities are expanding and accommodating an increasing proportion of the world's population. It is important to identify features of urban form that promote the health of city dwellers. Access to green space has been associated with health benefits at both individual and neighbourhood level. We investigated whether a relationship between green space coverage and selected mortality rates exists at the city level in the USA.</p> <p><b>Methods:</b> An ecological cross-sectional study. A detailed land use data set was used to quantify green space for the largest US cities (n=49, combined population of 43 million). Linear regression models were used to examine the association between city-level ‘greenness’ and city-level standardised rates of mortality from heart disease, diabetes, lung cancer, motor vehicle fatalities and all causes, after adjustment for confounders.</p> <p><b>Results:</b> There was no association between greenness and mortality from heart disease, diabetes, lung cancer or automobile accidents. Mortality from all causes was significantly higher in greener cities.</p> <p><b>Conclusions:</b> While considerable evidence suggests that access to green space yields health benefits, we found no such evidence at the scale of the American city. In the USA, greener cities tend also to be more sprawling and have higher levels of car dependency. Any benefits that the green space might offer seem easily eclipsed by these other conditions and the lifestyles that accompany them. The result merits further investigation as it has important implications for how we increase green space access in our cities.</p&gt

    Coexistence of bulk and surface states probed by Shubnikov-de Haas oscillations in Bi2_2Se3_3 with high charge-carrier density

    Get PDF
    Topological insulators are ideally represented as having an insulating bulk with topologically protected, spin-textured surface states. However, it is increasingly becoming clear that these surface transport channels can be accompanied by a finite conducting bulk, as well as additional topologically trivial surface states. To investigate these parallel conduction transport channels, we studied Shubnikov-de Haas oscillations in Bi2_2Se3_3 thin films, in high magnetic fields up to 30 T so as to access channels with a lower mobility. We identify a clear Zeeman-split bulk contribution to the oscillations from a comparison between the charge-carrier densities extracted from the magnetoresistance and the oscillations. Furthermore, our analyses indicate the presence of a two-dimensional state and signatures of additional states the origin of which cannot be conclusively determined. Our findings underpin the necessity of theoretical studies on the origin of and the interplay between these parallel conduction channels for a careful analysis of the material's performance.Comment: Manuscript including supplemental materia

    UV Aerosol Indices from SCIAMACHY: introducing the SCattering Index (SCI)

    Get PDF
    The Absorbing Aerosol Index (AAI) is a useful tool for detecting aerosols that absorb UV radiation – especially in cases where other aerosol retrievals fail, such as over bright surfaces (e.g. desert) and in the presence of clouds. The AAI does not, however, consider contributions from scattering (hardly absorbing) aerosols and clouds: they cause negative AAI values and are usually disregarded. In this paper, we demonstrate the use of the AAI's negative counterpart, the SCattering Index (SCI) to detect scattering aerosols. Consideration of the full UV Aerosol Index scale is of importance if the Aerosol Index is to be used for the quantification of aerosol absorption in the future. <br><br> Maps of seasonally averaged SCI show significantly enhanced values in summer in Southeast USA and Southeast Asia, pointing to a high production of scattering aerosols (presumably mainly sulphate aerosols and secondary organic aerosols) in this season. The application of a cloud filter makes the presence of scattering aerosols even more clear. Radiative transfer calculations were performed to investigate the sensitivity of AAI and SCI to cloud parameters, and it is demonstrated that clouds cause significant SCI, in some special cases even small AAI values. The results from cloud modelling imply that cloud effects need to be taken into account when AAI and SCI are used in a quantitative manner. <br><br> The paper concludes with a comparison of aerosol parameters from AERONET and our Aerosol Indices (AAI and SCI) from SCIAMACHY, where reasonable agreement was found for six AERONET stations in Southeast USA, Southeast Asia, and Africa. These findings corroborate the suitability of SCI as a tool to detect scattering aerosols

    Dust absorption and scattering in the silicon K-edge

    Get PDF
    The composition and properties of interstellar silicate dust are not well understood. In X-rays, interstellar dust can be studied in detail by making use of the fine structure features in the Si K-edge. The features in the Si K-edge offer a range of possibilities to study silicon-bearing dust, such as investigating the crystallinity, abundance, and the chemical composition along a given line of sight. We present newly acquired laboratory measurements of the silicon K-edge of several silicate-compounds that complement our measurements from our earlier pilot study. The resulting dust extinction profiles serve as templates for the interstellar extinction that we observe. The extinction profiles were used to model the interstellar dust in the dense environments of the Galaxy. The laboratory measurements, taken at the Soleil synchrotron facility in Paris, were adapted for astrophysical data analysis and implemented in the SPEX spectral fitting program. The models were used to fit the spectra of nine low-mass X-ray binaries located in the Galactic center neighborhood in order to determine the dust properties along those lines of sight. Most lines of sight can be fit well by amorphous olivine. We also established upper limits on the amount of crystalline material that the modeling allows. We obtained values of the total silicon abundance, silicon dust abundance, and depletion along each of the sightlines. We find a possible gradient of 0.06±0.020.06\pm0.02 dex/kpc for the total silicon abundance versus the Galactocentric distance. We do not find a relation between the depletion and the extinction along the line of sight.Comment: 18 pages, 16 figures. Accepted for publication in Astronomy and Astrophysic

    Investigating the interstellar dust through the Fe K-edge

    Get PDF
    The chemical and physical properties of interstellar dust in the densest regions of the Galaxy are still not well understood. X-rays provide a powerful probe since they can penetrate gas and dust over a wide range of column densities (up to 1024 cm−210^{24}\ \rm{cm}^{-2}). The interaction (scattering and absorption) with the medium imprints spectral signatures that reflect the individual atoms which constitute the gas, molecule, or solid. In this work we investigate the ability of high resolution X-ray spectroscopy to probe the properties of cosmic grains containing iron. Although iron is heavily depleted into interstellar dust, the nature of the Fe-bearing grains is still largely uncertain. In our analysis we use iron K-edge synchrotron data of minerals likely present in the ISM dust taken at the European Synchrotron Radiation Facility. We explore the prospects of determining the chemical composition and the size of astrophysical dust in the Galactic centre and in molecular clouds with future X-ray missions. The energy resolution and the effective area of the present X-ray telescopes are not sufficient to detect and study the Fe K-edge, even for bright X-ray sources. From the analysis of the extinction cross sections of our dust models implemented in the spectral fitting program SPEX, the Fe K-edge is promising for investigating both the chemistry and the size distribution of the interstellar dust. We find that the chemical composition regulates the X-ray absorption fine structures in the post edge region, whereas the scattering feature in the pre-edge is sensitive to the mean grain size. Finally, we note that the Fe K-edge is insensitive to other dust properties, such as the porosity and the geometry of the dust.Comment: 11 pages, 10 figures. Accepted for publication in Astronomy and Astrophysic

    Integrated land and water management for food and environmental security

    Get PDF
    Water resource management / Food security / Environmental effects / Soil degradation / Water pollution / Watersheds / Urbanization / Public policy / Water quality / Ecosystems / Land resources / Water scarcity / Developing countries / Poverty / Households / Food supply / Economic aspects / Social aspects / Groundwater depletion / Salinity / Wetlands / Investment / Land use / Water use / Training needs assessment / Research priorities

    Reply

    Get PDF
    Contains fulltext : 51833.pdf (publisher's version ) (Closed access

    Nuclear Structure Calculations and Modern Nucleon-Nucleon Potentials

    Full text link
    We study ground-state properties of the doubly magic nuclei 4He, 16O, and 40Ca employing the Goldstone expansion and using as input four different high-quality nucleon-nucleon (NN) potentials. The short-range repulsion of these potentials is renormalized by constructing a smooth low-momentum potential V-low-k. This is used directly in a Hartree-Fock approach and corrections up to third order in the Goldstone expansion are evaluated. Comparison of the results shows that they are only slightly dependent on the choice of the NN potential.Comment: 5 pages, submitted to Physical Review
    • 

    corecore