The composition and properties of interstellar silicate dust are not well
understood. In X-rays, interstellar dust can be studied in detail by making use
of the fine structure features in the Si K-edge. The features in the Si K-edge
offer a range of possibilities to study silicon-bearing dust, such as
investigating the crystallinity, abundance, and the chemical composition along
a given line of sight. We present newly acquired laboratory measurements of the
silicon K-edge of several silicate-compounds that complement our measurements
from our earlier pilot study. The resulting dust extinction profiles serve as
templates for the interstellar extinction that we observe. The extinction
profiles were used to model the interstellar dust in the dense environments of
the Galaxy. The laboratory measurements, taken at the Soleil synchrotron
facility in Paris, were adapted for astrophysical data analysis and implemented
in the SPEX spectral fitting program. The models were used to fit the spectra
of nine low-mass X-ray binaries located in the Galactic center neighborhood in
order to determine the dust properties along those lines of sight. Most lines
of sight can be fit well by amorphous olivine. We also established upper limits
on the amount of crystalline material that the modeling allows. We obtained
values of the total silicon abundance, silicon dust abundance, and depletion
along each of the sightlines. We find a possible gradient of 0.06±0.02
dex/kpc for the total silicon abundance versus the Galactocentric distance. We
do not find a relation between the depletion and the extinction along the line
of sight.Comment: 18 pages, 16 figures. Accepted for publication in Astronomy and
Astrophysic