33 research outputs found

    Upstream structural management measures for an urban area flooding in Turkey

    Get PDF
    In recent years, flooding has become an increasing concern across many parts of the world of both the general public and their governments. The climate change inducing more intense rainfall events occurring in short period of time lead flooding in rural and urban areas. In this study the flood modelling in an urbanized area, namely Samsun-Terme in Blacksea region of Turkey is performed. MIKE21 with flexible grid is used in 2-dimensional shallow water flow modelling. 1 x 1000(-1) scaled maps with the buildings for the urbanized area and 1 x 5000(-1) scaled maps for the rural parts are used to obtain DTM needed in the flood modelling. The bathymetry of the river is obtained from additional surveys. The main river passing through the urbanized area has a capacity of 500 m(3) s(-1) according to the design discharge obtained by simple ungauged discharge estimation depending on catchment area only. The upstream structural base precautions against flooding are modelled. The effect of four main upstream catchments on the flooding in the downstream urban area are modelled as different scenarios. It is observed that if the flow from the upstream catchments can be retarded through a detention pond constructed in one of the upstream catchments, estimated Q(100) flood can be conveyed by the river without overtopping from the river channel. The operation of the upstream detention ponds and the scenarios to convey Q(500) without causing flooding are also presented. Structural management measures to address changes in flood characteristics in water management planning are discussed

    Discretized rotation has infinitely many periodic orbits

    Get PDF
    For a fixed k in (-2,2), the discretized rotation on Z^2 is defined by (x,y)->(y,-[x+ky]). We prove that this dynamics has infinitely many periodic orbits.Comment: Revised after referee reports, and added a quantitative statemen

    The ALPS project release 2.0: Open source software for strongly correlated systems

    Full text link
    We present release 2.0 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. The code development is centered on common XML and HDF5 data formats, libraries to simplify and speed up code development, common evaluation and plotting tools, and simulation programs. The programs enable non-experts to start carrying out serial or parallel numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), the density matrix renormalization group (DMRG) both in a static version and a dynamic time-evolving block decimation (TEBD) code, and quantum Monte Carlo solvers for dynamical mean field theory (DMFT). The ALPS libraries provide a powerful framework for programers to develop their own applications, which, for instance, greatly simplify the steps of porting a serial code onto a parallel, distributed memory machine. Major changes in release 2.0 include the use of HDF5 for binary data, evaluation tools in Python, support for the Windows operating system, the use of CMake as build system and binary installation packages for Mac OS X and Windows, and integration with the VisTrails workflow provenance tool. The software is available from our web server at http://alps.comp-phys.org/.Comment: 18 pages + 4 appendices, 7 figures, 12 code examples, 2 table

    Metallic, magnetic and molecular nanocontacts

    Get PDF
    Scanning tunnelling microscopy and break-junction experiments realize metallic and molecular nanocontacts that act as ideal one-dimensional channels between macroscopic electrodes. Emergent nanoscale phenomena typical of these systems encompass structural, mechanical, electronic, transport, and magnetic properties. This Review focuses on the theoretical explanation of some of these properties obtained with the help of first-principles methods. By tracing parallel theoretical and experimental developments from the discovery of nanowire formation and conductance quantization in gold nanowires to recent observations of emergent magnetism and Kondo correlations, we exemplify the main concepts and ingredients needed to bring together ab initio calculations and physical observations. It can be anticipated that diode, sensor, spin-valve and spin-filter functionalities relevant for spintronics and molecular electronics applications will benefit from the physical understanding thus obtained

    High mass photon pairs in lepton+ lepton-gamma gamma events at LEP

    Get PDF
    High mass photon pairs in lepton+ lepton-gamma gamma events at LEP Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.P.; Alcaraz, J.; Aloisio, A.; Alverson, G.; Alviggi, M.G.; Ambrosi, G.; Linde, F.L. Published in: Physics Letters B DOI: 10.1016/0370-2693(92)91576-U Link to publication Citation for published version (APA): Adriani, O., Aguilar-Benitez, M., Ahlen, S. P., Alcaraz, J., Aloisio, A., Alverson, G., ... Linde, F. L. (1992). High mass photon pairs in lepton+ lepton-gamma gamma events at LEP. Physics Letters B, 295,[337][338][339][340][341][342][343][344][345][346] https://doi.org/10.1016/0370-2693(92)91576-U General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date: 28 Jun 2019 Physics Letters B 295 (1992) From the analysis of the reactions e + e-~ g + g-(n?) (g = e, #, ~) we observe four events, one e+e -~'7 and three #+ ~-??, with the invariant mass of the photon pairs close to 60 GeV. These events were selected from a data sample collected in the L3 detector corresponding to 950000 produced Z°'s. More data are necessary to ascertain the origin of these events

    Validation of the operational MSG-SEVIRI snow cover product over Austria

    Get PDF
    The objective of this study is to evaluate the mapping accuracy of the MSG-SEVIRI operational snow cover product over Austria. The SEVIRI instrument is aboard the geostationary Meteosat Second Generation (MSG) satellite. The snow cover product provides 32 images per day, with a relatively low spatial resolution of 5 km over Austria. The mapping accuracy is examined at 178 stations with daily snow depth observations and compared with the daily MODIS-combined (Terra + Aqua) snow cover product for the period April 2008–June 2012. <br><br> The results show that the 15 min temporal sampling allows a significant reduction of clouds in the snow cover product. The mean annual cloud coverage is less than 30% in Austria, as compared to 52% for the combined MODIS product. The mapping accuracy for cloud-free days is 89% as compared to 94% for MODIS. The largest mapping errors are found in regions with large topographical variability. The errors are noticeably larger at stations with elevations that differ greatly from those of the mean MSG-SEVIRI pixel elevations. The median of mapping accuracy for stations with absolute elevation difference less than 50 m and more than 500 m is 98.9 and 78.2%, respectively. A comparison between the MSG-SEVIRI and MODIS products indicates an 83% overall agreement. The largest disagreements are found in Alpine valleys and flatland areas in the spring and winter months, respectively

    Endovascular therapy in iliac artery and lower extremity peripheral arterial diseases

    No full text
    corecore