465 research outputs found
Pre-operative bladder irrigation with 1% Povidone iodine in reducing open prostatectomy surgical site infection (SSI) at university teaching hospital, Lusaka
Purpose: The aim of the study is to assess the effectiveness of using preoperative bladder irrigation with 1% povidone iodine in reducing post transvesical prostatectomy surgical site infections. Study design: This was a prospective randomized cohort study with blinding of patients and outcome adjudicator regarding group assignments.Methodology: One hundred and thirty patients were recruited from the waiting list of Urology unit II in the department of surgery during the period between July 2011 to December 2012. The non-probability convenience sampling technique was used. Any consenting patient who presented to the department of surgery for open prostatectomy and fulfills the inclusion criteria was selected. The patients were randomly allocated to each of the two groups. Each group had 65 patients. Patients in the study group had their bladder irrigated with 1% 50cc povidoneiodine which was drained upon opening the bladder followed by enucleating the adenomatous prostate gland. Hemostasis was ensured and a 3 way Foley's catheter inserted via the urethral into the bladder and ballooned appropriately for draining and irrigation. The bladder was sutured in 2 layers using 0 or 1 chromic catgut. In the control group povidone-iodine was not used. Both groups received pre-operative antibiotics 30 minutes before incision and post-operative for 5 days. Pre-operative, intraoperative and post-operative data were collected on a standardized data collection forms. Post-operative irrigation was done for 9 to 12 days after which the catheter was removed as an outpatient. Patients were followed up in the urological clinic at 1 week, 2weeks and at 4 weeks post-operatively to assess whether they had developed surgical site infections according to CDC guidelines. Data was analyzed using SPSS version 16.Results: The patients mean age was 71.1 in the control group and 71.4 in the study group with no statistically significant difference (t=0.318; p=0.75; df=126.89). The overall surgical infection rate was 16.2%. In the control group 15 out of 65 patients (23.1%) developed SSIs. While in the study group 6 out of 65 patients (9.2%) developed SSIs. The difference in the rates of SSI between the two groups was statistically significant (÷²; p<0.05; df=126.89) Escherichia coli was the most predominant organism 13/37 (35%), streptococcus 7/37 (18.9), Citrobacter koseri 5/37 (13.5%), Klebsiella sp 4/37 (10.8%). Escherichia coli, Streptococcus and Citrobacter were sensitive to ciprofloxacin; Pantoea agglomerans was sensitive to ceftazidime while Staphylococcus coagulase was sensitive to imipenem. Enterobacter cloace was resistant to all antibiotics used.Conclusion: The study found that irrigating the bladder with 1% povidone-iodine resulted in significant reduction in post prostatectomy surgical site infection, Escherichia coli as the most common causative organism, reduced morbidity and post-operative hospital stay in the povidone iodine group.Key words: Benign prostatic hyperplasia, transvesical prostatectomy, povidone iodine, surgical site infections
Crossover from three-dimensional to two-dimensional systems in the nonequilibrium zero-temperature random-field Ising model
We present extensive numerical studies of the crossover from three-dimensional to two-dimensional systems in the nonequilibrium zero-temperature random-field Ising model with metastable dynamics. Bivariate finite-size scaling hypotheses are presented for systems with sizes L °ø L °ø l which explain the size-driven critical crossover from two dimensions (l = const, L→∞) to three dimensions (l ∝ L→∞). A model of effective critical disorder Reffc (l,L) with a unique fitting parameter and no free parameters in the Reffc (l,L→∞) limit is proposed, together with expressions for the scaling of avalanche distributions bringing important implications for related experimental data analysis, especially in the case of thin three-dimensional systems
Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts.
The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes
Supraspinal inactivation of mitochondrial superoxide dismutase is a source of peroxynitrite in the development of morphine antinociceptive tolerance.
Effective treatment of chronic pain with morphine is limited by decreases in the drug’s analgesic action with chronic administration (antinociceptive tolerance). Because opioids are mainstays of pain management, restoring their efficacy has great clinical importance. We have recently reported that formation of peroxynitrite (ONOO(−), PN) in the dorsal horn of the spinal cord plays a critical role in the development of morphine antinociceptive tolerance and have further documented that nitration and enzymatic inactivation of mitochondrial superoxide dismutase (MnSOD) at that site provides a source for this nitroxidative species. We now report for the first time that antinociceptive tolerance is also associated with the inactivation of MnSOD at supraspinal sites. Inactivation of MnSOD led to nitroxidative stress as evidenced by increased levels of products of oxidative DNA damage and activation of the nuclear factor poly (ADP-ribose) polymerase in whole brain homogenates. Co-administration of morphine with potent Mn porphyrin-based peroxynitrite scavengers, (MnTE-2-PyP(5+) and MnTnHex-2-PyP(5+)) (1) restored the enzymatic activity of MnSOD, (2) attenuated PN derived nitroxidative stress, and (3) blocked the development of morphine induced antinociceptive tolerance. The more lipophilic analogue, MnTnHex-2-PyP(5+) was able to cross the blood brain barrier at higher levels than its lipophylic counterpart MnTE-2-PyP(5+) and was about 30 fold more efficacious. Collectively, these data suggest that peroxynitrite mediated enzymatic inactivation of supraspinal MnSOD provides a source of nitroxidative stress, which in turn contributes to central sensitization associated with the development of morphine antinociceptive tolerance. These results support our general contention that PN-targeted therapeutics may have potential as adjuncts to opiates in pain management
Signature of effective mass in crackling noise asymmetry
Crackling noise is a common feature in many dynamic systems [1-9], the most
familiar instance of which is the sound made by a sheet of paper when crumpled
into a ball. Although seemingly random, this noise contains fundamental
information about the properties of the system in which it occurs. One
potential source of such information lies in the asymmetric shape of noise
pulses emitted by a diverse range of noisy systems [8-12], but the cause of
this asymmetry has lacked explanation [1]. Here we show that the leftward
asymmetry observed in the Barkhausen effect [2] - the noise generated by the
jerky motion of domain walls as they interact with impurities in a soft magnet
- is a direct consequence of a magnetic domain wall's negative effective mass.
As well as providing a means of determining domain wall effective mass from a
magnet's Barkhausen noise our work suggests an inertial explanation for the
origin of avalanche asymmetries in crackling noise phenomena more generally.Comment: 13 pages, 4 figures, to appear in Nature Physic
Scaling properties of driven interfaces in disordered media
We perform a systematic study of several models that have been proposed for
the purpose of understanding the motion of driven interfaces in disordered
media. We identify two distinct universality classes: (i) One of these,
referred to as directed percolation depinning (DPD), can be described by a
Langevin equation similar to the Kardar-Parisi-Zhang equation, but with
quenched disorder. (ii) The other, referred to as quenched Edwards-Wilkinson
(QEW), can be described by a Langevin equation similar to the Edwards-Wilkinson
equation but with quenched disorder. We find that for the DPD universality
class the coefficient of the nonlinear term diverges at the depinning
transition, while for the QEW universality class either or
as the depinning transition is approached. The identification
of the two universality classes allows us to better understand many of the
results previously obtained experimentally and numerically. However, we find
that some results cannot be understood in terms of the exponents obtained for
the two universality classes {\it at\/} the depinning transition. In order to
understand these remaining disagreements, we investigate the scaling properties
of models in each of the two universality classes {\it above\/} the depinning
transition. For the DPD universality class, we find for the roughness exponent
for the pinned phase, and
for the moving phase. For the growth exponent, we find for the pinned phase, and for the moving phase.
Furthermore, we find an anomalous scaling of the prefactor of the width on the
driving force. A new exponent , characterizing the
scaling of this prefactor, is shown to relate the values of the roughnessComment: Latex manuscript, Revtex 3.0, 15 pages, and 15 figures also available
via anonymous ftp from ftp://jhilad.bu.edu/pub/abms/ (128.197.42.52
Hysteresis and Avalanches in the Random Anisotropy Ising Model
The behaviour of the Random Anisotropy Ising model at T=0 under local
relaxation dynamics is studied. The model includes a dominant ferromagnetic
interaction and assumes an infinite anisotropy at each site along local
anisotropy axes which are randomly aligned. Two different random distributions
of anisotropy axes have been studied. Both are characterized by a parameter
that allows control of the degree of disorder in the system. By using numerical
simulations we analyze the hysteresis loop properties and characterize the
statistical distribution of avalanches occuring during the metastable evolution
of the system driven by an external field. A disorder-induced critical point is
found in which the hysteresis loop changes from displaying a typical
ferromagnetic magnetization jump to a rather smooth loop exhibiting only tiny
avalanches. The critical point is characterized by a set of critical exponents,
which are consistent with the universal values proposed from the study of other
simpler models.Comment: 40 pages, 21 figures, Accepted for publication in Phys. Rev.
A Scalable Middleware Solution for Advanced Wide Area Web Services
To alleviate scalability problems in the Web, many researchers concentrate on how to incorporate advanced caching and replication techniques. Many solutions incorporate object-based techniques. In particular, Web resources are considered as distributed objects offering a well-defined interface. We argue that most proposals ignore two important aspects. First, there is little discussion on what kind of coherence should be provided. Proposing specific caching or replication solutions makes sense only if we know what coherence model they should implement. Second, most proposals treat all Web resources alike. Such a one-size-fits-all approach will never work in a wide-area system. We propose a solution in which Web resources are encapsulated in physically distributed shared objects. Each object should encapsulate not only state and operations, but also the policy by which its state is distributed, cached, replicated, migrated, etc
Recommended from our members
Open Science principles for accelerating trait-based science across the Tree of Life.
Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms. Trait science needs a vision for achieving global integration across all organisms. Here, we outline how the adoption of key Open Science principles-open data, open source and open methods-is transforming trait science, increasing transparency, democratizing access and accelerating global synthesis. To enhance widespread adoption of these principles, we introduce the Open Traits Network (OTN), a global, decentralized community welcoming all researchers and institutions pursuing the collaborative goal of standardizing and integrating trait data across organisms. We demonstrate how adherence to Open Science principles is key to the OTN community and outline five activities that can accelerate the synthesis of trait data across the Tree of Life, thereby facilitating rapid advances to address scientific inquiries and environmental issues. Lessons learned along the path to a global synthesis of trait data will provide a framework for addressing similarly complex data science and informatics challenges
Fire and grazing in a mesic tallgrass prairie: impacts on plant species and functional traits
Fire is a globally distributed disturbance that impacts terrestrial ecosystems and has been proposed to be a global “herbivore.” Fire, like herbivory, is a top-down driver that converts organic materials into inorganic products, alters community structure, and acts as an evolutionary agent. Though grazing and fire may have some comparable effects in grasslands, they do not have similar impacts on species composition and community structure. However, the concept of fire as a global herbivore implies that fire and herbivory may have similar effects on plant functional traits. Using 22 years of data from a mesic, native tallgrass prairie with a long evolutionary history of fire and grazing, we tested if trait composition between grazed and burned grassland communities would converge, and if the degree of convergence depended on fire frequency. Additionally, we tested if eliminating fire from frequently burned grasslands would result in a state similar to unburned grasslands, and if adding fire into a previously unburned grassland would cause composition to become more similar to that of frequently burned grasslands. We found that grazing and burning once every four years showed the most convergence in traits, suggesting that these communities operate under similar deterministic assembly rules and that fire and herbivory are similar disturbances to grasslands at the trait-group level of organization. Three years after reversal of the fire treatment we found that fire reversal had different effects depending on treatment. The formerly unburned community that was then burned annually became more similar to the annually burned community in trait composition suggesting that function may be rapidly restored if fire is reintroduced. Conversely, after fire was removed from the annually burned community trait composition developed along a unique trajectory indicating hysteresis, or a time lag for structure and function to return following a change in this disturbance regime. We conclude that functional traits and species-based metrics should be considered when determining and evaluating goals for fire management in mesic grassland ecosystems
- …