1,453 research outputs found

    The Universality of Initial Conditions for Globular Cluster Formation

    Full text link
    We investigate a simple model for globular cluster (GC) formation. We simulate the violent relaxation of initially homogeneous isothermal stellar spheres and show that it leads to the formation of clusters with radial density profiles that match the observed profiles of GCs. The best match is achieved for dynamically unevolved clusters. In this model, all the observed correlations between global GC parameters are accurately reproduced if one assumes that all the clusters initially had the same value of the stellar density and the velocity dispersion. This suggests that the gas which formed GCs had the same values of density and temperature throughout the universe.Comment: 12 pages, 4 figures, 1 table. Accepted for publication in ApJ Letter

    Models of Individual Blue Stragglers

    Full text link
    This chapter describes the current state of models of individual blue stragglers. Stellar collisions, binary mergers (or coalescence), and partial or ongoing mass transfer have all been studied in some detail. The products of stellar collisions retain memory of their parent stars and are not fully mixed. Very high initial rotation rates must be reduced by an unknown process to allow the stars to collapse to the main sequence. The more massive collision products have shorter lifetimes than normal stars of the same mass, while products between low mass stars are long-lived and look very much like normal stars of their mass. Mass transfer can result in a merger, or can produce another binary system with a blue straggler and the remnant of the original primary. The products of binary mass transfer cover a larger portion of the colour-magnitude diagram than collision products for two reasons: there are more possible configurations which produce blue stragglers, and there are differing contributions to the blended light of the system. The effects of rotation may be substantial in both collision and merger products, and could result in significant mixing unless angular momentum is lost shortly after the formation event. Surface abundances may provide ways to distinguish between the formation mechanisms, but care must be taking to model the various mixing mechanisms properly before drawing strong conclusions. Avenues for future work are outlined.Comment: Chapter 12, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe

    Modelling Collision Products of Triple-Star Mergers

    Full text link
    In dense stellar clusters, binary-single and binary-binary encounters can ultimately lead to collisions involving two or more stars. A comprehensive survey of multi-star collisions would need to explore an enormous amount of parameter space, but here we focus on a number of representative cases involving low-mass main-sequence stars. Using both Smoothed Particle Hydrodynamics (SPH) calculations and a much faster fluid sorting software package (MMAS), we study scenarios in which a newly formed product from an initial collision collides with a third parent star. By varying the order in which the parent stars collide, as well as the orbital parameters of the collision trajectories, we investigate how factors such as shock heating affect the chemical composition and structure profiles of the collision product. Our simulations and models indicate that the distribution of most chemical elements within the final product is not significantly affected by the order in which the stars collide, the direction of approach of the third parent star, or the periastron separations of the collisions. We find that the sizes of the products, and hence their collisional cross sections for subsequent encounters, are sensitive to the order and geometry of the collisions. For the cases that we consider, the radius of the product formed in the first (single-single star) collision ranges anywhere from roughly 2 to 30 times the sum of the radii of its parent stars. The final product formed in our triple-star collisions can easily be as large or larger than a typical red giant. We therefore expect the collisional cross section of a newly formed product to be greatly enhanced over that of a thermally relaxed star of the same mass.Comment: 20 pages, submitted to MNRA

    Constraining global properties of the Draco dwarf spheroidal galaxy

    Full text link
    By fitting a flexible stellar anisotropy model to the observed surface brightness and line-of-sight velocity dispersion profiles of Draco we derive a sequence of cosmologically plausible two-component (stars + dark matter) models for this galaxy. The models are consistent with all the available observations and can have either cuspy Navarro-Frenk-White or flat-cored dark matter density profiles. The dark matter halos either formed relatively recently (at z~2...7) and are massive (up to ~5x10^9 M_Sun), or formed before the end of the reionization of the universe (z~7...11) and are less massive (down to ~7x10^7 M_Sun). Our results thus support either of the two popular solutions of the "missing satellites" problem of Lambda cold dark matter cosmology - that dwarf spheroidals are either very massive, or very old. We carry out high-resolution simulations of the tidal evolution of our two-component Draco models in the potential of the Milky Way. The results of our simulations suggest that the observable properties of Draco have not been appreciably affected by the Galactic tides after 10 Gyr of evolution. We rule out Draco being a "tidal dwarf" - a tidally disrupted dwarf galaxy. Almost radial Draco orbits (with the pericentric distance <15 kpc) are also ruled out by our analysis. The case of a harmonic dark matter core can be consistent with observations only for a very limited choice of Draco orbits (with the apocentric-to-pericentric distances ratio of <2.5).Comment: 18 pages, 14 figures; accepted by Ap

    Explaining the Praesepe blue straggler HD 73666

    Get PDF
    The blue straggler phenomenon is not yet well explained by current theory; however, evolutionary models of star clusters call for a good knowledge of it. Here we try to understand the possible formation scenario of HD 73666, a blue straggler member of the Praesepe cluster. We compile the known physical properties of HD 73666 found in the literature, focusing in particular on possible binarity and the abundance pattern. HD 73666 appears to be slowly rotating, has no detectable magnetic field, and has normal abundances, thereby excluding close binary evolution and mass transfer processes. There is no evidence of a hot radiation source. With the use of theoretical results on blue straggler formation present in literature, we are able to conclude that HD 73666 was probably formed by physical collision involving at least one binary system, between 5 and 350 Myr (50 Myr if the star is an intrinsic slow rotator) ago.Comment: Accepted for publication on Astronomy and Astrophysic

    The Dynamical Implications of Multiple Stellar Formation Events in Galactic Globular Clusters

    Get PDF
    Various galactic globular clusters display abundance anomalies that affect the morphology of their colour-magnitude diagrams. In this paper we consider the possibility of helium enhancement in the anomalous horizontal branch of NGC 2808. We examine the dynamics of a self-enrichment scenario in which an initial generation of stars with a top-heavy initial mass function enriches the interstellar medium with helium via the low-velocity ejecta of its asymptotic giant branch stars. This enriched medium then produces a second generation of stars which are themselves helium-enriched. We use a direct N-body approach to perform five simulations and conclude that such two-generation clusters are both possible and would not differ significantly from their single-generation counterparts on the basis of dynamics. We find, however, that the stellar populations of such clusters would differ from single-generation clusters with a standard initial mass function and in particular would be enhanced in white dwarf stars. We conclude, at least from the standpoint of dynamics, that two-generation globular clusters are feasible.Comment: 24 pages, 7 figures, 3 tables. Accepted for publication in Ap

    Intraovarian insertion of autologous platelet growth factors as cell-free concentrate: Fertility recovery and first unassisted conception with term delivery at age over 40

    Get PDF
    Background: The use of autologous platelet-rich plasma as an ovarian treatment has not been standardized and remains controversial. Case Presentation: A 41Âœ-year old woman with diminished ovarian reserve (serum anti- Müllerian hormone = 0.163 mg/mL) and a history of 10 unsuccessful in vitro fertilization cycles presented for reproductive endocrinology consult. She and her partner declined donor oocyte in vitro fertilization. They were both in good general health and laboratory tests were unremarkable, except for mild thrombocytosis (platelets = 386K; normal range 150-379K) discovered in the female. The patient underwent intraovarian injection of fresh platelet-derived growth factor concentrate administered as an enriched cell-free substrate. Serum anti- Müllerian hormone increased by 115% within 6 wks of treatment. Spontaneous ovulation occurred the month after injection and subsequently the serum human chorionic gonadotropin was noted at 804 mIU/mL. Following an uneventful obstetrical course, a male infant was delivered at term without complication. Conclusion: This is the first description of intraovarian injection of enriched platelet-derived growth factors followed by unassisted pregnancy and live birth. As a refinement of conventional ovarian platelet-rich plasma therapy, this procedure may be particularly valuable for refractory cases where prognosis for pregnancy appears especially bleak. A putative role for thrombocytosis is also viewed in parallel with mechanisms of action as advanced earlier. With continued experience in ovarian application of autologous platelet growth factors, additional research will evaluate laboratory protocol/sample preparation, injection technique, and patient selection. Key words: Ovarian rejuvenation, Platelet-rich plasma, Cytokines, Infertility, IVF

    Northern Tornadoes Project. Northern Tornadoes Flyover Project: Summary Technical Report of the Year 1 Pilot Study

    Get PDF
    Summary Northern Tornadoes Flyover Project: Summary Technical Report of the Year 1 Pilot Study Gregory A. Kopp, Emilio Hong and Joanne Kennell Faculty of Engineering, University of Western Ontario David Sills Environment and Climate Change Canada 12 January 2018 The objectives of the Year 1 Pilot Study were to (i) develop a methodology for determining tornado occurrence in Northern Ontario, and (ii) obtain research quality data for at least one event. Because of the isolation of many regions, the approach assumed the use of radar data analysis combined with aerial surveys. These objectives were achieved. Aerial surveys were conducted for a total of seven events in Ontario and southern Quebec and 15 confirmed or probable tornadoes identified. Archival geo-tagged imagery was obtained for six of these events. Ten confirmed or probable tornadoes were identified in Ontario, five of which were not in the OSPC database. In addition, 5 tornadoes were confirmed in Quebec. For the 2017 season, the OSPC had a list of 10 verified tornadoes, as of December 21, 2017. The pilot project raises this number to 15. In total, 4 EF2 tornadoes and 1 EF3 tornado were identified via aerial photography. The remainder were EF1 or EF0. UPDATE – 1 March 2021 Based on the analysis of newly available Planet.com high-resolution satellite imagery and the use of related tools, events were reassessed and six additional tornadoes were discovered. However, four tornadoes were reassessed as downbursts. Overall, an additional two tornadoes were added to the 2017 count. The updated events are listed in a revised 2017 summary table appended at the end of this document

    Globular Clusters with Dark Matter Halos. II. Evolution in Tidal Field

    Full text link
    In this second paper in our series, we continue to test primordial scenarios of globular cluster formation which predict that globular clusters formed in the early universe in the potential of dark matter minihalos. In this paper we use high-resolution N-body simulations to model tidal stripping experienced by primordial dark-matter dominated globular clusters in the static gravitational potential of the host dwarf galaxy. We test both cuspy Navarro-Frenk-White (NFW) and flat-core Burkert models of dark matter halos. Our primordial globular cluster with an NFW dark matter halo survives severe tidal stripping, and after 10 orbits is still dominated by dark matter in its outskirts. Our cluster with Burkert dark matter halo loses almost all its dark matter to tidal stripping, and starts losing stars at the end of our simulations. The results of this paper reinforce our conclusion in Paper I that current observations of globular clusters are consistent with the primordial picture of globular cluster formation.Comment: 12 pages, 9 figures. Astrophysical Journal, in pres

    Double Blue Straggler sequences in GCs: the case of NGC 362

    Full text link
    We used high-quality images acquired with the WFC3 on board the HST to probe the blue straggler star (BSS) population of the Galactic globular cluster NGC 362. We have found two distinct sequences of BSS: this is the second case, after M 30, where such a feature has been observed. Indeed the BSS location, their extension in magnitude and color and their radial distribution within the cluster nicely resemble those observed in M 30, thus suggesting that the same interpretative scenario can be applied: the red BSS sub-population is generated by mass transfer binaries, the blue one by collisions. The discovery of four new W UMa stars, three of which lying along the red-BSS sequence, further supports this scenario. We also found that the inner portion of the density profile deviates from a King model and is well reproduced by either a mild power-law (\alpha -0.2) or a double King profile. This feature supports the hypothesis that the cluster is currently undergoing the core collapse phase. Moreover, the BSS radial distribution shows a central peak and monotonically decreases outward without any evidence of an external rising branch. This evidence is a further indication of the advanced dynamical age of NGC 362: in fact, together with M 30, NGC 362 belongs to the family of dynamically old clusters (Family III) in the "dynamical clock" classification proposed by Ferraro et al. (2012). The observational evidence presented here strengthens the possible connection between the existence of a double BSS sequence and a quite advanced dynamical status of the parent cluster.Comment: Accepted for publication by ApJ; 39 pages, 16 figures, 1 tabl
    • 

    corecore