8,315 research outputs found

    Modal decomposition of astronomical images with application to shapelets

    Full text link
    The decomposition of an image into a linear combination of digitised basis functions is an everyday task in astronomy. A general method is presented for performing such a decomposition optimally into an arbitrary set of digitised basis functions, which may be linearly dependent, non-orthogonal and incomplete. It is shown that such circumstances may result even from the digitisation of continuous basis functions that are orthogonal and complete. In particular, digitised shapelet basis functions are investigated and are shown to suffer from such difficulties. As a result the standard method of performing shapelet analysis produces unnecessarily inaccurate decompositions. The optimal method presented here is shown to yield more accurate decompositions in all cases.Comment: 12 pages, 17 figures, submitted to MNRA

    Ephemeral properties and the illusion of microscopic particles

    Full text link
    Founding our analysis on the Geneva-Brussels approach to quantum mechanics, we use conventional macroscopic objects as guiding examples to clarify the content of two important results of the beginning of twentieth century: Einstein-Podolsky-Rosen's reality criterion and Heisenberg's uncertainty principle. We then use them in combination to show that our widespread belief in the existence of microscopic particles is only the result of a cognitive illusion, as microscopic particles are not particles, but are instead the ephemeral spatial and local manifestations of non-spatial and non-local entities

    Bayes-X: a Bayesian inference tool for the analysis of X-ray observations of galaxy clusters

    Full text link
    We present the first public release of our Bayesian inference tool, Bayes-X, for the analysis of X-ray observations of galaxy clusters. We illustrate the use of Bayes-X by analysing a set of four simulated clusters at z=0.2-0.9 as they would be observed by a Chandra-like X-ray observatory. In both the simulations and the analysis pipeline we assume that the dark matter density follows a spherically-symmetric Navarro, Frenk and White (NFW) profile and that the gas pressure is described by a generalised NFW (GNFW) profile. We then perform four sets of analyses. By numerically exploring the joint probability distribution of the cluster parameters given simulated Chandra-like data, we show that the model and analysis technique can robustly return the simulated cluster input quantities, constrain the cluster physical parameters and reveal the degeneracies among the model parameters and cluster physical parameters. We then analyse Chandra data on the nearby cluster, A262, and derive the cluster physical profiles. To illustrate the performance of the Bayesian model selection, we also carried out analyses assuming an Einasto profile for the matter density and calculated the Bayes factor. The results of the model selection analyses for the simulated data favour the NFW model as expected. However, we find that the Einasto profile is preferred in the analysis of A262. The Bayes-X software, which is implemented in Fortran 90, is available at http://www.mrao.cam.ac.uk/facilities/software/bayesx/.Comment: 22 pages, 11 figure

    Non-invasive, near-field terahertz imaging of hidden objects using a single pixel detector

    Get PDF
    Terahertz (THz) imaging has the ability to see through otherwise opaque materials. However, due to the long wavelengths of THz radiation ({\lambda}=300{\mu}m at 1THz), far-field THz imaging techniques are heavily outperformed by optical imaging in regards to the obtained resolution. In this work we demonstrate near-field THz imaging with a single-pixel detector. We project a time-varying optical mask onto a silicon wafer which is used to spatially modulate a pulse of THz radiation. The far-field transmission corresponding to each mask is recorded by a single element detector and this data is used to reconstruct the image of an object placed on the far side of the silicon wafer. We demonstrate a proof of principal application where we image a printed circuit board on the underside of a 115{\mu}m thick silicon wafer with ~100{\mu}m ({\lambda}/4) resolution. With subwavelength resolution and the inherent sensitivity to local conductivity provided by the THz probe frequencies, we show that it is possible to detect fissures in the circuitry wiring of a few microns in size. Imaging systems of this type could have other uses where non-invasive measurement or imaging of concealed structures with high resolution is necessary, such as in semiconductor manufacturing or in bio-imaging

    Classifying LISA gravitational wave burst signals using Bayesian evidence

    Full text link
    We consider the problem of characterisation of burst sources detected with the Laser Interferometer Space Antenna (LISA) using the multi-modal nested sampling algorithm, MultiNest. We use MultiNest as a tool to search for modelled bursts from cosmic string cusps, and compute the Bayesian evidence associated with the cosmic string model. As an alternative burst model, we consider sine-Gaussian burst signals, and show how the evidence ratio can be used to choose between these two alternatives. We present results from an application of MultiNest to the last round of the Mock LISA Data Challenge, in which we were able to successfully detect and characterise all three of the cosmic string burst sources present in the release data set. We also present results of independent trials and show that MultiNest can detect cosmic string signals with signal-to-noise ratio (SNR) as low as ~7 and sine-Gaussian signals with SNR as low as ~8. In both cases, we show that the threshold at which the sources become detectable coincides with the SNR at which the evidence ratio begins to favour the correct model over the alternative.Comment: 21 pages, 11 figures, accepted by CQG; v2 has minor changes for consistency with accepted versio

    Dust heating by the interstellar radiation field in models of turbulent molecular clouds

    Get PDF
    We have calculated the radiation field, dust grain temperatures, and far infrared emissivity of numerical models of turbulent molecular clouds. When compared to a uniform cloud of the same mean optical depth, most of the volume inside the turbulent cloud is brighter, but most of the mass is darker. There is little mean attenuation from center to edge, and clumping causes the radiation field to be somewhat bluer. There is also a large dispersion, typically by a few orders of magnitude, of all quantities relative to their means. However, despite the scatter, the 850 micron emission maps are well correlated with surface density. The fraction of mass as a function of intensity can be reproduced by a simple hierarchical model of density structure.Comment: 32 pages, 14 figures, submitted to Ap

    Universality of optimal measurements

    Get PDF
    We present optimal and minimal measurements on identical copies of an unknown state of a qubit when the quality of measuring strategies is quantified with the gain of information (Kullback of probability distributions). We also show that the maximal gain of information occurs, among isotropic priors, when the state is known to be pure. Universality of optimal measurements follows from our results: using the fidelity or the gain of information, two different figures of merits, leads to exactly the same conclusions. We finally investigate the optimal capacity of NN copies of an unknown state as a quantum channel of information.Comment: Revtex, 5 pages, no figure

    Alternative Fourier Expansions for Inverse Square Law Forces

    Get PDF
    Few-body problems involving Coulomb or gravitational interactions between pairs of particles, whether in classical or quantum physics, are generally handled through a standard multipole expansion of the two-body potentials. We discuss an alternative based on a compact, cylindrical Green's function expansion that should have wide applicability throughout physics. Two-electron "direct" and "exchange" integrals in many-electron quantum systems are evaluated to illustrate the procedure which is more compact than the standard one using Wigner coefficients and Slater integrals.Comment: 10 pages, latex/Revtex4, 1 figure
    corecore