Terahertz (THz) imaging has the ability to see through otherwise opaque
materials. However, due to the long wavelengths of THz radiation
({\lambda}=300{\mu}m at 1THz), far-field THz imaging techniques are heavily
outperformed by optical imaging in regards to the obtained resolution. In this
work we demonstrate near-field THz imaging with a single-pixel detector. We
project a time-varying optical mask onto a silicon wafer which is used to
spatially modulate a pulse of THz radiation. The far-field transmission
corresponding to each mask is recorded by a single element detector and this
data is used to reconstruct the image of an object placed on the far side of
the silicon wafer. We demonstrate a proof of principal application where we
image a printed circuit board on the underside of a 115{\mu}m thick silicon
wafer with ~100{\mu}m ({\lambda}/4) resolution. With subwavelength resolution
and the inherent sensitivity to local conductivity provided by the THz probe
frequencies, we show that it is possible to detect fissures in the circuitry
wiring of a few microns in size. Imaging systems of this type could have other
uses where non-invasive measurement or imaging of concealed structures with
high resolution is necessary, such as in semiconductor manufacturing or in
bio-imaging