3,427 research outputs found

    Deformation of Quantum Dots in the Coulomb Blockade Regime

    Full text link
    We extend the theory of Coulomb blockade oscillations to quantum dots which are deformed by the confining potential. We show that shape deformations can generate sequences of conductance resonances which carry the same internal wavefunction. This fact may cause strong correlations of neighboring conductance peaks. We demonstrate the relevance of our results for the interpretation of recent experiments on semiconductor quantum dots.Comment: 4 pages, Revtex, 4 postscript figure

    Role of Van Hove Singularities and Momentum Space Structure in High-Temperature Superconductivity

    Full text link
    There is a great deal of interest in attributing the high critical temperatures of the cuprates to either the proximity of the Fermi level to a van Hove singularity or to structure of the superconducting pairing potential in momentum space far from the Fermi surface. We examine these ideas by calculating the critical temperature Tc for model Einstein-phonon- and spin-fluctuation-mediated superconductors within both the standard, Fermi-surface-restricted Eliashberg theory and the exact mean field theory, which accounts for the full momentum structure of the pairing potential and the energy dependence of the density of states. By using two models of spin-fluctuation-mediated pairing in the cuprates, we demonstrate that our results are independent of the details of the dynamical susceptibility, which is taken to be the pairing potential. We also compare these two models against available neutron scattering data, since these data provide the most direct constraints on the susceptibility. We conclude that the van Hove singularity does not drastically alter Tc from its value when the density of states is constant and that the effect of momentum structure is significant but secondary in importance to that of the energy dependence in the density of states.Comment: 23 pages, 6 figures upon request, revtex version 2, vHs-

    Nonlinear Jaynes-Cummings model of atom-field interaction

    Get PDF
    Interaction of a two-level atom with a single mode of electromagnetic field including Kerr nonlinearity for the field and intensity-dependent atom-field coupling is discussed. The Hamiltonian for the atom-field system is written in terms of the elements of a closed algebra, which has SU(1,1) and Heisenberg-Weyl algebras as limiting cases. Eigenstates and eigenvalues of the Hamiltonian are constructed. With the field being in a coherent state initially, the dynamical behaviour of atomic-inversion, field-statistics and uncertainties in the field quadratures are studied. The appearance of nonclassical features during the evolution of the field is shown. Further, we explore the overlap of initial and time-evolved field states.Comment: 14 pages, 6 figures is PS forma

    Metal-Insulator Transitions in Degenerate Hubbard Models and Ax_xC60_{60}

    Get PDF
    Mott-Hubbard metal-insulator transitions in NN-fold degenerate Hubbard models are studied within the Gutzwiller approximation. For any rational filling with xx (integer) electrons per site it is found that metal-insulator transition occurs at a critical correlation energy Uc(N,x)=Uc(N,2N−x)=Îł(N,x)âˆŁÏ”Ë‰(N,x)∣U_c(N,x)=U_c(N,2N-x)=\gamma(N,x)|\bar{\epsilon}(N,x)|, where ϔˉ\bar{\epsilon} is the band energy per particle for the uncorrelated Fermi-liquid state and Îł(N,x)\gamma(N,x) is a geometric factor which increases linearly with xx. We propose that the alkali metal doped fullerides AxC60A_xC_{60} can be described by a 3-fold degenerate Hubbard model. Using the current estimate of band width and correlation energy this implies that most of AxC60{\rm A_xC_{60}}, at integer xx, are Mott-Hubbard insulators and A3C60{\rm A_3C_{60}} is a strongly correlated metal.Comment: 10 pages, Revte

    Epitaxial thin films of Dirac semimetal antiperovskite Cu\u3csub\u3e3\u3c/sub\u3ePdN

    Get PDF
    The growth and study of materials showing novel topological states of matter is one of the frontiers in condensed matter physics. Among this class of materials, the nitride antiperovskite Cu3PdN has been proposed as a new three-dimensional Dirac semimetal. However, the experimental realization of Cu3PdN and the consequent study of its electronic properties have been hindered due to the difficulty of synthesizing this material. In this study, we report fabrication and both structural and transport characterization of epitaxial Cu3PdN thin films grown on (001)-oriented SrTiO3 substrates by reactive magnetron sputtering and post-annealed in NH3 atmosphere. The structural properties of the films, investigated by x-ray diffraction and scanning transmission electron microscopy, establish single phase Cu3PdN exhibiting cube-on-cube epitaxy (001)[100]Cu3PdN||(001)[100]SrTiO3. Electrical transport measurements of as-grown samples show metallic conduction with a small temperature coefficient of the resistivity of 1.5 x 10-4 K-1 and a positive Hall coefficient. Post-annealing in NH3 results in the reduction of the electrical resistivity accompanied by the Hall coefficient sign reversal. Using a combination of chemical composition analyses and ab initio band structure calculations, we discuss the interplay between nitrogen stoichiometry and magneto-transport results in the framework of the electronic band structure of Cu3PdN. Our successful growth of thin films of antiperovskite Cu3PdN opens the path to further investigate its physical properties and their dependence on dimensionality, strain engineering, and doping

    Exact travelling wave solutions of a beam equation

    Get PDF
    In this paper we make a full analysis of the symmetry reductions of a beam equation by using the classical Lie method of infinitesimals and the nonclassical method. We consider travelling wave reductions depending on the form of an arbitrary function. We have found several new classes of solutions that have not been considered before: solutions expressed in terms of Jacobi elliptic functions, Wadati solitons and compactons. Several classes of coherent structures are displayed by some of the solutions: kinks, solitons, two humps compactons.17 pĂĄgina

    Evaluation of medical student self-rated preparedness to care for limited english proficiency patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with limited English proficiency (LEP) represent a growing proportion of the US population and are at risk of receiving suboptimal care due to difficulty communicating with healthcare providers who do not speak their language. Medical school curricula are required to prepare students to care for all patients, including those with LEP, but little is known about how well they achieve this goal. We used data from a survey of medical students' cross-cultural preparedness, skills, and training to specifically explore their self-rated preparedness to care for LEP patients.</p> <p>Methods</p> <p>We electronically surveyed students at one northeastern US medical school. We used bivariate analyses to identify factors associated with student self-rated preparedness to care for LEP patients including gender, training year, first language, race/ethnicity, percent LEP and minority patients seen, and skill with interpreters. We used multivariate logistic regression to examine the independent effect of each factor on LEP preparedness. In a secondary analysis, we explored the association between year in medical school and self-perceived skill level in working with an interpreter.</p> <p>Results</p> <p>Of 651 students, 416 completed questionnaires (63.9% response rate). Twenty percent of medical students reported being very well or well-prepared to care for LEP patients. Of these, 40% were in their fourth year of training. Skill level working with interpreters, prevalence of LEP patients seen, and training year were correlated (p < 0.001) with LEP preparedness. Using multivariate logistic regression, only student race/ethnicity and self-rated skill with interpreters remained statistically significant. Students in third and fourth years were more likely to feel skilled with interpreters (p < 0.001).</p> <p>Conclusions</p> <p>Increasingly, medical students will need to be prepared to care for LEP patients. Our study supports two strategies to improve student preparedness: training students to work effectively with interpreters and increasing student diversity to better reflect the changing US demographics.</p

    The frequency in Japanese of genetic variants of 22 proteins III. Phosphoglucomutase-1, phosphoglucomutase-2, 6-phosphogluconate dehydrogenase, adenylate kinase, and adenosine deaminase

    Full text link
    Five enzyme systems, PGM 1 , PGM 2 , ADA, 6-PGD and AK, were examined by electrophoresis in over 4000 samples from Hiroshima and Nagasaki for the frequencies of common and rare variants. In the PGM 1 , system, the PGM 2 1 allele and PGM 7 1 ; allele were found in polymorphic proportions. I n addition, five kinds of slow variants and three types of fast variants of PGM 1 were detected. The PGM 3 NGS 1 1 allele was found in five individuals from Nagasaki, but was not observed in samples from Hiroshima. There were no variants of PGM 2 . Three kinds of fast variants of 6-PGD were detected. NO variation in AK was observed. There were no rare variants of ADA. The 6-PGD c allele had a frequency of 0.084 in Hiroshima, and 0.093 in Nagasaki, and the ADA 2 allele frequencies of 0.025 in Hiroshima and 0.032 in Nagasaki.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65524/1/j.1469-1809.1977.tb01912.x.pd
    • 

    corecore