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In this paper we make a full analysis of the symmetry reductions of a beam equation by using
the classical Lie method of infinitesimals and the nonclassical method. We consider travelling wave
reductions depending on the form of an arbitrary function. We have found several new classes
of solutions that have not been considered before: solutions expressed in terms of Jacobi elliptic
functions, Wadati solitons and compactons. Several classes of coherent structures are displayed by
some of the solutions: kinks, solitons, two humps compactons.
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1. Introduction

Historical events of travelling wave behavior in the Golden Gate Bridge in San Francisco
motivated McKenna and Walter [25] to study travelling wave solutions in a nonlinear beam
equation

∆ ≡ utt + uxxxx + f(u) = 0, (1.1)

where u = u(x, t) is the deflection of the roadbed, the x-axis points are in the direction
along the bridge and t is time. The cables can apply some force even if they are loose and
the force is given by some nonlinear function f , [10]. Suspension bridges have a history
of large-scale oscillations caused by wind, earthquakes or traffic forces which may lead to
structural failure. As a result of these oscillations and the resonance effects, the cables start
to loosen and tighten producing a nonlinear effect.

Several papers investigated this beam equation from different points of view. In [11,12]
Chen and McKenna gave a variational proof, via the Mountain Pass Lemma, of the existence
of travelling wave solutions for Eq. (1.1). They showed the existence of at least one non-
trivial solution of (1.1). For f(u) = eu−1 − 1, but by applying the Mountain Pass algorithm
to a finite subinterval of R they did obtain numerical solutions. They claimed that solutions
seem to exist in the range 0 < c <

√
2. As the wave speed approaches

√
2, the solutions
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became highly oscillatory in nature, whereas when c approaches 0, they appear to go to
infinity in amplitude.

In [9,19,21] the authors studied Eq. (1.1) numerically and they used either continuation
methods or variational numerical methods to gain more information on the structure of the
equation solutions set. In [20,24] the authors have considered the existence of multiple solu-
tions for the beam equation. In [14,15] the beam equation is transformed into an ordinary
differential equation and is treated by using the considerable power of dynamical systems.

There is no existing general theory for solving nonlinear partial differential equations
and the methods of point transformations are a powerful tool. Some of the most useful point
transformations are those which form a continuous group. Lie classical symmetries admitted
by nonlinear partial differential equations are useful for finding invariant solutions. Moreover
symmetry reductions and exact solutions have several different important applications in
the context of differential equations. Since solutions of partial differential equations asymp-
totically tend to solutions of lower-dimensional equations obtained by symmetry reductions,
some of these special solutions will illustrate important physical phenomena. Motivated by
the fact that symmetry reductions for many PDE’s can not be obtained by using classical
symmetries, there have been several generalizations of the classical Lie group method for
symmetry reductions. The nonclassical method was firstly introduced by Bluman and Cole
[4] to study the symmetry reductions of the heat equation. The description of the method
can be found in [4, 5, 17,22].

For several classes of PDE, the search for soliton-like solutions has raised a great interest
during the last two decades. Solitons are analytical solutions that are exponentially localized
in the space, but, in general, they are not null out of any bounded set. By weakening the
regularity conditions and by strengthening the conditions of localization, the compactons
were introduced [28, 29]. The functions in this class are null out of some bounded spatial
set but may not be analytical at some points.

For nonlinear PDE whose coefficients can vanish at some points, as is our beam model,
the existence and relevance of non-analytical solutions has been considered by several
authors. However, not always some of these authors use the same definitions to deal with
compactons. The main differences appear with the behaviour of the possible solutions at the
singularities of the equation. In this paper we understand that a compacton is a function
that has enough continuous derivatives in order for this function to satisfy the PDE in all
points [28,29]. Of course, at the singularities the hypothesis of Cauchy–Kovalevsky theorem
are not satisfied.

The aim of this work is to do a complete group classification of the beam equation
(1.1), and to report the reduction obtained from the optimal system of subalgebras. In
order to find further reductions we also apply the nonclassical method to (1.1). For f(u)
linear we find new nonclassical generators unobtainable by Lie classical method. From these
reductions we also derive exact solutions. Some of these solutions are compactons solutions,
kinks, solutions expressed in terms of Jacobi elliptic functions and Wadati solitons.

2. Lie Symmetries Classification and Reductions

The classical method, due originally to Lie (1895) [23], was popularized by Ovsiannikov
[27] and presented in a modern form using the jet space theory by Olver [26]. This method

J.
 N

on
lin

ea
r 

M
at

h.
 P

hy
s.

 2
01

1.
18

:3
3-

49
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
D

IZ
 o

n 
03

/3
1/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



June 1, 2011 15:5 WSPC/1402-9251 259-JNMP S140292511100126X

Exact Travelling Wave Solutions of a Beam Equation 35

leads us to those one-parameter group of transformations called classical symmetries that
leave the equation unchanged, and hence, they map the set of all solutions to itself. These
symmetries are used to reduce the order of ordinary differential equations (ODE’s), or to
reduce the number of independent variables of PDE’s.

In order to apply the classical method to Eq. (1.1) we consider the one-parameter Lie
group of infinitesimal transformations in (x, t, u) given by

x∗ = x + εξ(x, t, u) + O(ε2),

t∗ = t + ετ(x, t, u) + O(ε2),

u∗ = u + εη(x, t, u) + O(ε2),

(2.1)

where ε is the group parameter. One requires that these transformations leave invariant the
set of solutions of Eq. (1.1). The associated Lie algebra of infinitesimal symmetries is given
by the infinitesimal generator

v = ξ(x, t, u)∂x + τ(x, t, u)∂t + η(x, t, u)∂u. (2.2)

Since a solution can be used to generate new solutions using different groups, it would be
convenient to identify the minimum collection of subgroups that will generate all possible
group invariant solutions. Such a collection is called an optimal system and it is constructed
by examining the ways in which group invariant solutions transform among themselves
through the adjoint operation, [26].

The symmetry variables are found by solving the invariant surface condition

Φ ≡ ξ(x, t, u)ux + τ(x, t, u)ut − η(x, t, u) = 0. (2.3)

For PDE’s with two independent variables, as it is the beam equation, a single group
reduction transforms the PDE into ODE’s which are generally easier to solve than the
original equation.

We require that the transformations (2.1) leave invariant the set of solutions of equation
(1.1). This yields to an overdetermined, linear system of equations for the infinitesimals
ξ(x, t, u), τ(x, t, u) and η(x, t, u) and it is accomplished by requiring that the

pr(4)v(∆) |∆=0= 0,

where pr(4)v is the 4-th order prolongation of the vector field v.
Applying the classical method to Eq. (1.1) yields to the following system of equations

for the infinitesimals

τt − 2ξx = 0,

4ηuxxx − ξxxxx = 0,

2ηux − 3ξxx = 0,

3ηuxx − 2ξxxx = 0,

2ηtu − τtt = 0,

ηtt + ηxxxx − fηu + f ′η + 2τtf = 0,

(2.4)
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where ξ = ξ(x) and τ = τ(t). These equations were generated using the maxima package
symmgrp2009.max [8]. By solving system (2.4) we obtain

ξ = k1x + k2, τ = 2k1t + k3, η = k4u + φ(x, t),

where ki, i = 1, . . . , 4, are arbitrary constants, and f and φ are related by the following
condition:

k4ufu + φfu + (4k1 − k4)f + φxxxx + φtt = 0. (2.5)

For f(u) arbitrary we get that the associated Lie algebra of infinitesimal symmetries admit-
ted by (1.1) is given by the infinitesimal generators

v1 = ∂x, v2 = ∂t.

• For the generator λv1 + v2 we obtain travelling wave reductions

z = x − λt, u(x, t) = h(z),

where h(z) satisfies

h′′′′ + λ2h′′ + f(h) = 0. (2.6)

From (2.5), according to the form of f , we can distinguish different cases for which Eq. (1.1)
have extra symmetries. Since Eq. (1.1) has additional symmetries and the reductions that
correspond to v1 and v2 have already been derived, we also determine the similarity vari-
ables and similarity solutions corresponding to the other generators.

Case 1: If f(u) = (au + b)n, with a, b �= 0 and n �= 1, besides v1 and v2, we obtain the
infinitesimal generator

v1
3 = x∂x + 2t∂t +

4(au + b)
a(1 − n)

∂u.

The generators of the nontrivial one-dimensional optimal system are the set

v1, λv1 + v2, v1
3,

where λ ∈ R is an arbitrary constant.
For v1

3 we obtain the symmetry reduction

z = xt−
1
2 , u = t

2
1−n h(z) − b

a
,

where h(z) satisfies

h′′′′ +
1
4
z2h′′ +

3n + 5
4(n − 1)

zh′ + anhn +
2(n + 1)
(n − 1)2

h = 0. (2.7)
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Equation (2.7) does not admit any classical Lie symmetry. However, from particular solu-
tions of Eq. (2.7), we can obtain some exact solutions of (1.1):

• For a = n

√
−8(n+1)(n+3)(3n+1)

cn−1
1 (n−1)4

,

h(z) = c1z
4

1−n

is a solution of Eq. (2.7) which leads to the solution of Eq. (1.1)

u(x, t) = c1x
4

1−n − b

a
.

• For a = 1
c1

n

√
−2c1(n+1)

(n−1)2 and h = c1 we obtain

u(x, t) = c1t
2

1−n − b

a
.

Case 2: If f(u) = b exp(au), with a, b �= 0, besides v1 and v2, the equation has an extra
symmetry, namely,

v2
3 = x∂x + 2t∂t − 4

a
∂u.

The generators of the nontrivial one-dimensional optimal system are the set

v1, λv1 + v2, v2
3,

where λ ∈ R is an arbitrary constant.
For v2

3 the similarity variables and similarity solutions are:

z = xt−
1
2 , u(x, t) = −2

a
ln(t) + h(z), (2.8)

where h(z) satisfies

h′′′′ +
z2

4
h′′ +

3
4
zh′ + b exp(ah(z)) +

2
a

= 0. (2.9)

Equation (2.9) does not admit any classical Lie symmetry. However, by using particular
solutions of the Eq. (2.9), we can obtain some solutions of Eq. (1.1):

• For b = − 24
aca

1
,

h = ln
(
c1z

− 4
a

)

is solution of Eq. (2.9) which leads to the solution of Eq. (1.1)

u(x, t) = ln(c1x
− 4

a ).

• Making the variable change u = ln(x−ah(z)) we can find the solution of Eq. (1.1)

u(x, t) =
1
a

ln(4ac1 cosh−2[a
√

2bc1(t + c2)]).
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For completeness, we have included the case in which f(u) is linear.

Case 3: If f(u) = u, φ(x, t) is any solution to (1.1) and we only consider the subgroup for
which φ(x, t) = 0, [4], then, besides v1 and v2, we obtain the infinitesimal generator

v3
3 = u∂u.

The generators of the nontrivial one-dimensional optimal system are the set

v1, λv1 + v2, λv1 + αv2 + v3
3,

where λ, α ∈ R are arbitrary constants.
For λv1 + αv2 + v3

3 the similarity variables and similarity solutions are:

z = αx − λt, u(x, t) = h(z)e
1
α

t, (2.10)

where h(z) satisfies

α6h′′′′ + λ2α2h′′ − 2λαh′ + (1 + α2)h = 0. (2.11)

The solution of Eq. (2.14) is

h(z) =
4∑

i=0

Ci ewi z,

where wi, with i = 1, . . . , 4 are the roots of equation

α6w4 + λ2α2w2 − 2λαw + α2 + 1 = 0.

Case 4: If f(u) = 0, φ(x, t) is any solution to (1.1) and we only consider the subgroup for
which φ(x, t) = 0, then, besides v1, v2 and v3

3, we obtain the infinitesimal generator

v4 = x∂x + 2t∂t.

The generators of the nontrivial one-dimensional optimal system are the set

v1, λv1 + v2, λv3
3 + v4,

where λ ∈ R is an arbitrary constant.
For λv3

3 + v4 the similarity variables and similarity solutions are:

z = xt−
1
2 , u(x, t) = t

λ
2 h(z), (2.12)

where h(z) satisfies

h′′′′ +
z2

4
h′′ − (2λ − 3)

4
zh′ +

λ(λ − 2)
4

h = 0. (2.13)

The general solution of Eq. (2.13) is

h(z) = C1 F
(

2 − λ

4
,−λ

4
;
1
4
,
1
2
,
3
4
;− z4

64

)
+ C2 z2F

(
2 − λ

4
,
4 − λ

4
;
3
4
,
5
4
,
3
2
;− z4

64

)

+ C3 z3F
(

3 − λ

4
,
5 − λ

4
;
5
4
,
3
2
,
7
4
;− z4

64

)
+ C4 zF

(
1 − λ

4
,
3 − λ

4
;
1
2
,
3
4
,
5
4
;− z4

64

)
,

where F(a1, a2; b1, b2, b3;w) is the generalized hypergeometric function.
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Case 5: If f(u) = 1, we obtain the infinitesimal generators v1, v2, 4v3
3 +v4. The generators

of the nontrivial one-dimensional optimal system are the set

v1, λv1 + v2, 4v3
3 + v4,

where λ ∈ R is an arbitrary constant.
From 4v3

3 + v4 we obtain the symmetry reduction (2.12) with λ = 4 where h(z) satisfies

h′′′′ +
z2

4
h′′ − 5

4
zh′ + 2h + 1 = 0. (2.14)

The general solution of Eq. (2.14) is

h(z) = −1
2

+ c1z
2 + c2(z4 − 12)

+ c3

(
e−

iz2

4 (−2z3 + 20iz) +
1 + i√

2

√
π(−z4 + 12iz2 + 12)Erf

(
1 + i

2
√

2
z

))

+ c4

(
e

iz2

4 (2iz3 − 20z) − 1 + i√
2

√
π(z4 + 12iz2 − 12)Erf

(−1 + i

2
√

2
z

))
,

where Erf(z) is the error function [1].

3. Nonclassical Method

In [16] Clarkson and Mansfield proposed an algorithm for calculating the determining equa-
tions associated with the nonclassical method: the PDE system is augmented with the
invariant surface conditions, the nonclassical symmetries are found by seeking the classi-
cal symmetries of the augmented system while demanding that the symmetries operator
is related to the invariant surface condition. Bilă and Niesen in [3] dropped this require-
ment. Their procedure consists in reducing the augmented PDE system to its involutive
form and then applying the classical Lie method to the reduced PDE, but with an arbi-
trary symmetry operator which is not related anymore to the invariant surface condition.
In [7] Bruzón and Gandarias have extended the algorithm described for Bilă and Niesen to
determine the nonclassical symmetries of a PDE for the case ξp = 0. The authors observed
that for any equation which can be expressed in the form ut = A(x, t, u), utt = A(x, t, u)
or A(x, y, t, u)uy + uty + B(x, y, t, u) = 0, the nonclassical determining equations can be
derived by substituting the corresponding functions A and B, which are given in [7].

To apply the nonclassical method to the beam Eq. (1.1) we require both the equation
and the surface condition (2.3) to be invariant under the infinitesimal generator (2.2). We
can distinguish two cases:

Case (i): τ �= 0. We apply the algorithm described in [3]. If τ �= 0, without loss of generality,
we may set τ = 1. Substituting

utt = uxξξx + 2(ux)2ξξu − ηuxξu − uxξt + uxxξ2 − 2ηuuxξ − ηxξ + ηηu + ηt,

which is obtained from the invariant surface condition ut = η − ξux in (1.1), we express
(1.1) in the equivalent form

uxxxx + A(x, t, u)ux + B(x, t, u)uxx + C(x, t, u)(ux)2 + D(x, t, u) = 0, (3.1)
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where A = (−2ηξu − ηuξ + ηηx − ηt), B = η2, C = 2ηηu and D = −ηξx + ξξu + ξt + f(u).
We apply the classical Lie method to (3.1). The infinitesimal generator is

V = ξ1(x, t, u)∂x + ξ2(x, t, u)∂t + φ(x, t, u)∂u.

Substituting ξ1 = ξ, ξ2 = 1, φ = η and A, B, C and D we obtain the determining equations
of the nonclassical method

ξu = 0,

ηuu = 0,

2ηux − 3ξxx = 0,

3ηuxx + ξξt − 2ξxxx + 2ξ2ξx = 0,

2ξηut − 4ηuxxx + 2ξtηu + 8ξξxηu + ξtt + 2ξxξt + ξxxxx − 4ξ(ξx)2 = 0,

ηtt + 4ξxηt + ηxxxx − 2ξtηx − 4ξξxηx + 2ηηut + 4ξxηηu − fηu + fuη + 4ξxf = 0.

(3.2)

In this case we do not obtain new symmetries.

Case (ii): τ = 0. For this case we proceed in the form described in [7]. We consider, without
loss of generality, ξ = 1. By using the invariant surface condition ux = η and its derivatives,
the equivalent form of (1.1) is

utt = A,

where A = −f −ηxxx−ηuηxx−3ηηuuηx−3ηuxηx− (ηu)2ηx−η3ηuuu−3η2ηuux−4η2ηuηuu−
3ηηuxx − 5ηηuηux − η(ηu)3.

Substituting A into the determining equations of the nonclassical method, which were
obtained in [7]

ηuu = 0,
ηtu = 0,

Aηu + ηtt −Auη −Ax = 0.
(3.3)

we obtain the determining equations for Eq. (1.1) for the infinitesimal η

ηuu = 0, (3.4)

ηtu = 0, (3.5)

ηxxxx + 4ηuxηxx + 6ηuxxηx + 4ηuηuxηx + 4ηηuxxx + 6ηηuηuxx

+ 8η(ηux)2 + 4η(ηu)2ηux − fηu + ηtt + fuη = 0. (3.6)

From (3.4) and (3.5) we deduce

η = α(x)u + β(x, t). (3.7)

If α = 0 and β = 0 the symmetries obtained are classical symmetries.
If α �= 0 or β �= 0, substituting (3.7) in (3.6) we obtain that f = au + b with a �= 0. In

this case, α and β must satisfy the following equations:

α′′′′ + 4αα′′′ + 10α′α′′ + 6α2α′′ + 12α(α′)2 + 4α3α′ = 0,

βxxxx + 4α′βxx + 6α′′βx + 4αα′βx + βtt + aβ + 4α′′′β + 6αα′′β (3.8)

+ 8(α′)2β + 4α2α′β − αb = 0.
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Solving the first equation of (3.8), we obtain that if α = k
x+x0

, with k = 1, 2 or 3, the
system (3.8) is reduced to equation

[−4k(k − 3)(k − 2) + a(x + x0)4]β + (x + x0)[−bk(x + x0)2

−4k(k − 3)βx + (x + x0)[−4kβxx + (x + x0)2(βtt + βxxxx)]] = 0.
(3.9)

• For k = 1, x0 = 0, Eq. (3.9) can be reduced to the equation x4(βxxxx + βtt + aβ)− bx3 −
4x2βxx + 8xβx − 8β = 0. We find the solutions:

— If β = 0 and b = 0 the symmetry ξ = 1, τ = 0, and η = u
x does not verify the

determining equations obtained by the classical Lie method. Therefore we obtain the
nonclassical symmetry reduction

w = t, u = xh(t), (3.10)

where h(t) satisfies the ODE

h′′ + ah = 0. (3.11)

Hence we obtain for the beam equation (1.1), with f(u) = au + b and a �= 0, the
following exact solutions:

u(x, t) = c1x sin(
√

at) + c2x cos(
√

at),

u(x, t) = c1x cosh(
√−at) + c2x sinh(

√−at).

— If β = b
ax + k1

x exp( 4
√−ax)(−1 + 4

√−ax) + k2
x exp(− 4

√−ax)(1 + 4
√−ax).

The symmetry ξ = 1, τ = 0 and

η =
u

x
+

b

ax
+

k1

x
exp( 4

√−ax)(−1 + 4
√−ax) +

k2

x
exp(− 4

√−ax)(1 + 4
√−ax),

does not verify the determining equation obtained by the classical Lie method. If we
take β = b

ax + k1
x exp( 4

√−ax)(−1 + 4
√−ax), the transformation

w = t, u = xh(t) − b

a
+ k1 exp( 4

√−ax)

reduces Eq. (1.1) to Eq. (3.11), and we obtain the following exact solution for the
beam Eq. (1.1):

u(x, t) = x2(c1 cosh(
√−at) + c2 sinh(

√−at)) − b

a
+ k1 exp( 4

√−ax)

• For k = 2, x0 = 0, Eq. (3.9) can be written as

x3(aβ + βtt + βxxxx) + 8(βx − xβxx) − 2bx2 = 0.

For b = 0 a solution is

β = (k1 cos(
√

at) + k2 sin(
√

at))(k3 + k4x
2 + k5x

5 + k6x
−1).
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The symmetry ξ = 1, τ = 0 and

η =
2u
x

+ (k1 cos(
√

at) + k2 sin(
√

at))(k3 + k4x
2 + k5x

5 + k6x
−1),

does not verify the determining equation obtained by the classical Lie method.
The transformation

y = t, u = x2h(t) − 1
4
(2k6 + 4k3x − 4k4x

3 − k5x
6)(k1 cos(

√
at) + k2 sin(

√
at)),

with k1, . . . , k6 arbitrary constants, reduces Eq. (1.1) to equation

h′′ + ah + 90k5(k1 cos(
√

at) + k2 sin(
√

at)) = 0.

We obtain a new exact solution for the beam Eq. (1.1):

u(x, t) = x2(c1 cos(
√

at) + c2 sin(
√

at)) +
45
√

ak5x
2t

a
(k2 cos(

√
at) − k1 sin(

√
at))

− 1
4
(2k6 + 4k3x − 4k4x

3 − k5x
6)(k1 cos(

√
at) + k2 sin(

√
at))

• For k = 3 and x0 = 0 Eq. (3.9) can be written as

−3(bx + 4βxx) + x2(aβ + βtt + βxxxx) = 0.

We find

β =
3c2

ax
+ (k4 sin(

√
a + k1t) + k5 cos(

√
a + k1t))

×
(

k2

(
4
√

k1 +
3
x

)
exp(− 4

√
k1x) + k3

(
4
√

k1 − 3
x

)
exp( 4

√
k1x))

)
,

with k1, k2, . . . , k5 arbitrary constants. The symmetry ξ = 1, τ = 0 and

η =
3u
x

+
3b
ax

+ (k4 sin(
√

a + k1t) + k5 cos(
√

a + k1t))

×
(

k2

(
4
√

k1 +
3
x

)
exp(− 4

√
k1x) + k3

(
4
√

k1 − 3
x

)
exp( 4

√
k1x))

)
,

does not verify the determining equation obtained by the classical Lie method.
If we take

β =
3b
ax

+ k2 sin(
√

a + k1t)
(

4
√

k1 +
3
x

)
exp(− 4

√
k1x),

the transformation y = t, u = x3h(t)− b
a +k2 sin(

√
a + k1t) exp(− 4

√
k1x) reduces Eq. (1.1)

to Eq. (3.11).

The solution for the beam Eq. (1.1) is:

u(x, t) = x3(c1 cos(
√

at) + c2 sin(
√

at)) − b

a
+ k2 sin(

√
a + k1t) exp(− 4

√
k1x)
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4. Travelling Waves Solutions

Due to the fact that the Jacobian elliptic functions are solution of the equation of Jacobi

(H ′)2 = r + pH2 + qH4, (4.1)

with r, p and q constants, we can look for travelling wave solutions of the generalized beam
equation when f(u) is a finite linear sum of power functions.

Then the reduced ODE (2.6) becomes

h′′′′ + λ2h′′ +
n∑

i=1

αih
βi = 0. (4.2)

By using derivation and taking into account that cn2(z,m) = 1− sn2(z,m) = 1− (
h
α

) 2
β and

dn2(z,m) = 1 − m sn2(z,m) = 1 − m
(

h
α

) 2
β , see [1], we obtain

Case (i): For

h(z) = α snβ(z,m). (4.3)

f(h) = α1h
4
β

+1 + α2h
2
β

+1 + α3h
− 4

β
+1 + α4h

− 2
β

+1 + α5h, (4.4)

where

α1 = −β(β + 1)(β + 2)(β + 3)m2

α
4
β

, (4.5)

α2 = −β(β + 1)m(λ2 − 2β2m − 4βm − 4m − 2β2 − 4β − 4)

α
2
β

,

α3 = −α
4
β (β − 3)(β − 2)(β − 1)β,

α4 = −α
2
β (β − 1)β(λ2 − 2β2m + 4βm − 4m − 2β2 + 4β − 4),

α5 = β2(mλ2 + λ2 − β2m2 − 4β2m − 10m − β2). (4.6)

Hence, an exact solution of Eq. (1.1), where f(u) is obtained substituting h by u in
(4.4), is

u(x, t) = α snβ(x − λt,m). (4.7)

Case (ii): For

h(z) = α dnβ(z,m); (4.8)

in a similar way we can write

f(h) = γ1h
− 2

β
+1 + γ2h + γ3h

2
β

+1 + γ4h
− 4

β
+1 + γ5h

4
β

+1, (4.9)
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where

γ1 = −α
2
β (β − 1)β(m − 1)(λ2 − 2β2m + 4βm − 4m + 4β2 − 8β + 8), (4.10)

γ2 = β2(mλ2 − 2λ2 − β2m2 + 6β2m + 10m − 6β2 − 10),

γ3 =
β(β + 1)(λ2 − 2β2m − 4βm − 4m + 4β2 + 8β + 8)

α
2
β

,

γ4 = −α
4
β (β − 3)(β − 2)(β − 1)β(m − 1)2,

γ5 = −β(β + 1)(β + 2)(β + 3)

α
4
β

. (4.11)

Hence, an exact solution of Eq. (1.1), where f(u) is obtained substituting h by u in
(4.9), is

u(x, t) = α dnβ(x − λt,m). (4.12)

In the same way, we can obtain functions f(h) for which the functions αcnβ(z,m), and
other Jacobian elliptic functions are solutions of Eq. (2.6), as well as αzβ and α exp(z) .

In the following we give some solutions with physical interest:

• Setting α = β = 1, λ = −2 and m = 0.9999 in (4.4)–(4.6), we get

f(h) = −23.9952h5 + 31.9948h3 − 7.99879h, (4.13)

where h = sn(z, 0.9999) is a solution of (2.6). Hence, we obtain that

u(x, t) = sn(x + 2t, 0.9999), (4.14)

is a solution of Eq. (1.1) with f(u) = −23.9952u5 + 31.9948u3 − 7.99879u. In Fig. 1 we plot
solution (4.14) which is an almost square wave.
• Setting m = 1, λ = −1

2 , α = 1
4 and β = 1 in (4.4)–(4.6) we get

f(h) = −6144h5 + 632h3 − 31
2

h

where h(z) = 1
4sn(z, 1) is a solution of (2.6). Taking into account that sn(z, 1) = tanh(z),

u(x, t) =
1
4
tanh(x +

1
2
t), (4.15)

is a solution of (1.1) with f(u) = −6144u5 + 632u3 − 31
2 u. In Fig. 2 we plot solution (4.15)

which is a kink solution.
• Compactons were introduced by Rosenau and Hyman [29] as a class of solitary wave solu-
tions with compact support. In order to obtain a compacton solution f(y) for a differential
equation, f must be a non identically null solution in a compact set Q, and f must be null
when y /∈ Q.

For instance, we can find a 2-hump compacton in the following way.
Let us observe that in (2.6), we can obtain the solution h = 0 if f(0) = 0.
If m ∈ N, h = A sinm(γz) for |z| ≤ π

γ , and h = 0 elsewhere, then h /∈ C∞(R) but h have
a jump discontinuity for the m-order derivative at the points z = ±π

γ .
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Fig. 1. Solution (4.14).
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0.2

u

Fig. 2. Solution (4.15).

It can be shown that for m ≥ 6 the function h is regular enough to be a solution for
Eq. (2.6), in the classical sense, by choosing an adequate function f . For instance we make
m = 6 and

f(h) = 6γ2h
1
3 (60A

2
3 γ2 + 6h

2
3 (36γ2 − λ2) + 5A

1
3 h

1
3 (λ2 − 52γ2)).

Because the Jacobi elliptic function sn(z, 0) = sin(z) we can relate this choice of f with
the one given in (4.4)–(4.6) with m = 0, α = A and β = m.
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We observe that h(z) is a solution of (2.6) with this choice of f for |z| < π
γ and for |z| > π

γ .
For z = ±π

γ the ODE‘s existence and uniqueness theorem fails: f(h) is a continuous function
but it is not a lipschitzian function for h = 0. Nevertheless the solution h is smooth enough
(h ∈ C5(R)) in order to satisfy (2.6). [28,29]. Hence, we obtain that

u(x, t) =




A sin6(γ(x − λt)), |x − λt| ≤ π

γ
,

0, |x − λt| >
π

γ
,

(4.16)

with f(h) = 6γ2h
1
3 (60A

2
3 γ2 +6h

2
3 (36γ2−λ2)+5A

1
3 h

1
3 (λ2−52γ2)), is a compacton solution

of (1.1). In Fig. 3 we plot the solution (4.16) with A = 1, γ = 1
4 and λ = 1 which is a

sine-type double compacton solution.
• Setting m = λ = α = 1 and β = 2 in (4.9)-(4.10) we get

f(h) = −120h3 + 126h2 − 20h,

where h(z) = dn2(z, 1) is a solution of (2.6). Taking into account that dn(z, 1) = sech(z),

u(x, t) = sech2(x − t), (4.17)

is an exact solution of (1.1) with f(u) = −120u3 + 126u2 − 20u. In Fig. 4 we plot solution
(4.17) which is a soliton solution.
• The Wadati functions are functions of the form W = d

dx

(
2 arctan( n1 sin(n2x)

n2 cosh(n1x))
)
, where

n1, n2 are gaussian integers, i.e. complex numbers whose real and imaginary parts are inte-
gers. Since these functions can be written in terms of trigonometric or hyperbolic functions,
some algebraic relations between the functions and their derivatives could be investigated.
So, we will try to find some specific forms of f for which we obtain solutions in Wadati

−20

−10

0

10

20
−10

−5

0

5

10

0.0

0.5

1.0

Fig. 3. Solution (4.16) for γ = 1
4 .
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Fig. 4. Solution (4.17).

functions. For n1 = 2, n2 = i

h =
4(cosh(3z) − 3 cosh(z))

3 − 4 cosh(2z) − cosh(4z)
. (4.18)

Setting cosh(z) = w we get

h =
12w − 8w3

−3 + 4w4
. (4.19)

Substituting (4.19) into (2.6) we obtain

f =
4w

(4w4 − 3)5
(512w18 − 72448w16 + 563712w14 − 2240256w12 + 4609728w10 − 5451552w8

+ 4077216w6 − 1854576w4 + 414882w2 + (3 − 4w4)2(2w2(16w8 − 248w6 + 552w4

− 684w2 + 441) − 135)λ2 − 48843)

where w = w(h) is given in implicit form in (4.19). Hence, we obtain that

u(x, t) =
4(cosh(3(x − λt)) − 3 cosh(x − λt))

3 − 4 cosh(2(x − λt)) − cosh(4(x − λt))
(4.20)

is an exact solution for Eq. (1.1). In Fig. 5 we plot solution (4.20) with λ = 2
• When we make f(h) = 1

4(a2 + λ2)2h the Eq. (2.6) admits the solutions of the damped
vibration equation h′′ +ah′ + bh = 0 with b = 1

2 (a2 +λ2), i.e. h′′ +ah′ + 1
2 (a2 +λ2)h = 0. In

the general case this corresponds to an undamped angular frequency equal to
√

a2+λ2

2 and
a damping factor equal to a√

2(a2+λ2)
so the solutions are underdamped, corresponding to an
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−2 0 2

−1
0

1
2

0

1

2

3

4

Fig. 5. Solution (4.20) with λ = 2.

oscillatory motion with an exponential decay in the amplitude. When a = 0 making f(h) =
−b(b + λ2)h the Eq. (2.6) admits the solutions of the free vibration equation h′′ + bh = 0
as b > 0. When a = 0 and λ = 0, that correspond to stationary solutions, the equation
becomes h′′ = 0.

5. Conclusions

In this paper, the complete Lie group classification for the beam equation (1.1) has been
obtained. We have constructed the optimal system and have derived the corresponding
reduced equations. We have used an algorithm described by Bilă and Niesen [3] to determine
nonclassical symmetries and extended by Bruzón and Gandarias [7]. By using this algorithm,
for f linear, we have derived new symmetry generators for equation (1.1). We have derived
new travelling wave solutions. Among them we have found solitons, kinks, anti-kinks, two
hump compactons and Wadati solitons. The new solutions can display several types of
coherent structures.
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