University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Evgeny Tsymbal Publications

Research Papers in Physics and Astronomy

11-11-2017

Epitaxial thin films of Dirac semimetal antiperovskite Cu₃PdN

C. X. Quintela University of Wisconsin-Madison

N. Campbell University of Wisconsin - Madison

D. F. Shao University of Nebraska - Lincoln, dfshao@unl.edu

J. Irwin University of Wisconsin-Madison

D. T. Harris University of Wisconsin - Madison

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/physicstsymbal Part of the <u>Condensed Matter Physics Commons</u>

Quintela, C. X.; Campbell, N.; Shao, D. F.; Irwin, J.; Harris, D. T.; Lie, L.; Anderson, T. J.; Reiser, N.; Pan, X. Q.; Tsymbal, Evgeny Y.; Rzchowski, M. S.; and Eom, C B., "Epitaxial thin films of Dirac semimetal antiperovskite Cu₃PdN" (2017). *Evgeny Tsymbal Publications*. 85. http://digitalcommons.unl.edu/physicstsymbal/85

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska -Lincoln. It has been accepted for inclusion in Evgeny Tsymbal Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Authors

C. X. Quintela, N. Campbell, D. F. Shao, J. Irwin, D. T. Harris, L. Lie, T. J. Anderson, N. Reiser, X. Q. Pan, Evgeny Y. Tsymbal, M. S. Rzchowski, and C B. Eom

Epitaxial thin films of Dirac semimetal antiperovskite Cu₃PdN

C. X. Quintela, N. Campbell, D. F. Shao, J. Irwin, D. T. Harris, L. Xie, T. J. Anderson, N. Reiser, X. Q. Pan, E. Y. Tsymbal, M. S. Rzchowski, and C. B. Eom

Citation: APL Materials **5**, 096103 (2017); doi: 10.1063/1.4992006 View online: https://doi.org/10.1063/1.4992006 View Table of Contents: http://aip.scitation.org/toc/apm/5/9 Published by the American Institute of Physics

Articles you may be interested in

Heteroepitaxial growth of tetragonal $Mn_{2.7-x}Fe_xGa_{1.3}$ ($0 \le x \le 1.2$) Heusler films with perpendicular magnetic anisotropy APL Materials **5**, 096102 (2017); 10.1063/1.4991468

Interfacial B-site atomic configuration in polar (111) and non-polar (001) SrIrO₃/SrTiO₃ heterostructures APL Materials **5**, 096110 (2017); 10.1063/1.4993170

Growth of strontium ruthenate films by hybrid molecular beam epitaxy APL Materials **5**, 096101 (2017); 10.1063/1.4998772

Exposing high-energy surfaces by rapid-anneal solid phase epitaxy APL Materials **5**, 086103 (2017); 10.1063/1.4992004

Reduction of in-plane field required for spin-orbit torque magnetization reversal by insertion of Au spacer in Pt/Au/Co/Ni/Co/Ta APL Materials **5**, 106104 (2017); 10.1063/1.4991950

Mapping cation diffusion through lattice defects in epitaxial oxide thin films on the water-soluble buffer layer Sr₃Al₂O₆ using atomic resolution electron microscopy APL Materials **5**, 096108 (2017); 10.1063/1.4994538

Epitaxial thin films of Dirac semimetal antiperovskite Cu₃PdN

C. X. Quintela,¹ N. Campbell,² D. F. Shao,³ J. Irwin,² D. T. Harris,¹ L. Xie,⁴ T. J. Anderson,¹ N. Reiser,² X. Q. Pan,⁵ E. Y. Tsymbal,³ M. S. Rzchowski,² and C. B. Eom^{1,a}

¹Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

²Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA ³Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588, USA

⁴National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China ⁵Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, California 92697, USA

(Received 25 June 2017; accepted 28 August 2017; published online 11 September 2017)

The growth and study of materials showing novel topological states of matter is one of the frontiers in condensed matter physics. Among this class of materials, the nitride antiperovskite Cu₃PdN has been proposed as a new three-dimensional Dirac semimetal. However, the experimental realization of Cu₃PdN and the consequent study of its electronic properties have been hindered due to the difficulty of synthesizing this material. In this study, we report fabrication and both structural and transport characterization of epitaxial Cu₃PdN thin films grown on (001)-oriented SrTiO₃ substrates by reactive magnetron sputtering and post-annealed in NH₃ atmosphere. The structural properties of the films, investigated by x-ray diffraction and scanning transmission electron microscopy, establish single phase Cu₃PdN exhibiting cube-on-cube epitaxy (001)[100]Cu₃PdNll(001)[100]SrTiO₃. Electrical transport measurements of as-grown samples show metallic conduction with a small temperature coefficient of the resistivity of 1.5×10^{-4} K⁻¹ and a positive Hall coefficient. Post-annealing in NH₃ results in the reduction of the electrical resistivity accompanied by the Hall coefficient sign reversal. Using a combination of chemical composition analyses and *ab initio* band structure calculations, we discuss the interplay between nitrogen stoichiometry and magneto-transport results in the framework of the electronic band structure of Cu₃PdN. Our successful growth of thin films of antiperovskite Cu₃PdN opens the path to further investigate its physical properties and their dependence on dimensionality, strain engineering, and doping. © 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4992006]

The discovery of three-dimensional (3D) Dirac semimetal (DSM) phases in Na₃Bi^{1,2} and Cd₃As₂³⁻⁷ was a breakthrough in condensed matter physics as it launched the growth and study of 3D topological materials. Bulk 3D-DSMs, characterized by having Dirac-type energy dispersion in the 3D momentum *k*-space close to the Fermi level,⁸ are usually viewed as bulk counterparts of graphene owing to their similar electronic structure and unique transport properties, including ultrahigh electron motility and giant magnetoresistance.^{6,7} Moreover, Dirac nodes in bulk 3D-DSMs are robust against physical perturbations and doping as they are protected by distinct crystal symmetries.^{3,8,9} In addition to their unique physical properties and potential electronic applications,^{2,10} 3D-DSMs are also a platform to realize other topological phases of interest, such as

^aAuthor to whom correspondence should be addressed: eom@engr.wisc.edu

topological insulators, topological superconductors, 3D Weyl semimetals, or node-line semimetals (NLSs).^{2,11–13}

Recently, two groups independently proposed nitride antiperovskite Cu₃PdN as a new 3D-DSM material with three pairs of Dirac points stabilized by the C_4 rotational crystal symmetry of Cu₃PdN.^{14,15} A schematic diagram of the proposed electronic band structure of Cu₃PdN near the Fermi level (E_F) is shown in Fig. 1(a), comprising a normal quadratic conduction band at the gamma (Γ) point, a linear dispersive valence band crossing E_F along the R-X momentum direction, and a Dirac cone located along the R-M direction. In the absence of spin-orbit coupling (SOC), the gap at the R-X direction closes and calculations predict Cu₃PdN to be a NLS, another topologically non-trivial phase in which the linear dispersive bands meet along a line in the *k*-space (node-line) instead of at discrete Dirac points. Experimentally, this phase can be achieved by replacing Pd by lighter atoms like Zn. In the NLS phase, "drumhead" surface states are predicted, which have been proposed as a platform for achieving high-temperature superconductivity.^{16–19} Additionally, if the C_4 crystal symmetry of Cu₃PdN is broken, the Dirac nodes in the 3D-DSM phase are gapped and Cu₃PdN becomes a strong topological insulator.^{14,15}

Despite its intriguing predicted physical properties, the experimental realization of bulk Cu₃PdN and its consequent electronic and transport characterization has been hindered due to the difficulty of synthesizing this material. The fact that Cu₃PdN decomposes at 470 °C,²⁰ together with the inherent unreactive nature of most nitrogen sources below that temperature,^{21,22} makes fabrication of this compound challenging. Low-temperature solution synthesis has been used to fabricate nanoparticles of Cu₃PdN,^{23,24} but the small size and polycrystalline nature of the nanoparticles hamper the study of the intrinsic electronic properties of Cu₃PdN. Fabrication of micrometric crystals was reported using high pressure synthesis techniques;²⁰ however, as with the solution derived material, the microscopic size makes electronic characterization challenging.

In this letter, we report fabrication of epitaxial thin films of Cu_3PdN on (001)-oriented SrTiO₃ single crystal substrates. We overcame the difficulty introduced by low-temperature synthesis by using reactive magnetron sputtering, a deposition technique that can produce metal nitrides at relatively low temperatures by ionizing N₂ gas during the growth.²⁵ Our structural analyses confirm single phase Cu₃PdN films exhibiting cube-on-cube epitaxy on SrTiO₃. We show that post-annealing in NH₃ results in the reduction of the electrical resistivity of the films accompanied by the Hall coefficient sign reversal from positive to negative. Using secondary ion mass spectrometry (SIMS) compositional analysis and *ab initio* band structure calculations, we discuss the interplay between nitrogen stoichiometry and magneto-transport results in the framework of the electronic structure of Cu₃PdN.

In Fig. 1(b), we show the crystallographic unit cell of Cu₃PdN. Ideal Cu₃PdN has a cubic perovskite-type crystal structure (space group *Pm-3m*) with reported bulk lattice constant a = 3.854 Å for nearly stoichiometric Cu₃Pd_{0.989}N single crystals.²⁰ In antiperovskite Cu₃PdN, nitrogen is located

FIG. 1. (a) Schematic of the first Brillouin zone and reduced electronic band structure near the Fermi level (E_F) for bulk Cu₃PdN considering spin-orbit coupling. A Dirac node is located along the M-R momentum direction, a linear dispersive valence band crossing E_F along the R-X direction, and an electron pocked at the Γ point. (b) Perspective view of the unit cells of ideal cubic antiperovskite Cu₃PdN and *ABO*₃ oxide perovskite showing their geometrically identical crystal structures (space group *Pm-3m*).

at the center of the unit cell in an octahedral interstitial surrounded by Cu atoms (face-centered) and Pd atoms at the corners of the cubic unit cell. A relevant feature of the crystal structure of Cu_3PdN is its good structural and lattice match with most of the single-crystal oxide perovskite substrates with a general chemical formula ABO_3 , as shown in Fig. 1(b). In terms of thin-film growth, these similarities between film and substrate are desirable as they are basic criteria to promote epitaxial growth.

Under the previous criterion, we chose (001) SrTiO₃ single crystals as substrates to grow Cu₃PdN as they not only have similar crystal structures (same Pm-3m space group) but also have a good lattice match of $\varepsilon = 1.3\%$ in the (001) plane.²⁶ Moreover, (001)-oriented SrTiO₃ substrates can be treated by using a buffered-HF etch and subsequent high-temperature annealing to obtain atomically-flat, TiO₂terminated surfaces.²⁷ Our Cu₃PdN films were grown by DC reactive planar magnetron sputtering using a Cu₃Pd stoichiometric target (99.9% purity) in an Ar (20 sccm)/N₂ (20 sccm) atmosphere of 15 mTorr. The target was sputtered at 50 W and the heater temperature was set at 330 °C. Prior to deposition, a base pressure of 1×10^{-7} Torr was achieved. We found the window of optimum growth conditions to obtain epitaxial and single phase Cu₃PdN to be extremely narrow: slight deviations from the ideal conditions result in polycrystalline Cu₃PdN and/or the emergence of other phases. The as-grown films were then post-annealed in flowing NH₃ (99.99%) atmosphere at 330 $^{\circ}$ C in a tubular furnace to investigate the effect of annealing on the structural, compositional, and electrical properties of the films. Both as-grown and annealed Cu₃PdN films are stable in air and resistant to common solvents like acetone, ethanol, or isopropyl alcohol. The results presented in this study correspond to 60 nm thick films (labeled as as-grown) that were subsequently post-annealed in NH_3 for a total time of 36 h (labeled as annealed).

The structural properties of both as-grown and annealed films were investigated at room temperature by XRD using a four-circle X-ray diffractometer equipped with Cu–K α_1 radiation. In Fig. 2(a), we show a characteristic XRD out-of-plane 2θ scan for as-grown and annealed Cu₃PdN. For both films, only the (00*l*) reflections of Cu₃PdN and SrTiO₃ are observed, indicating single-phase

FIG. 2. (a) Out-of-plane XRD scan for both as-grown and NH₃ post-annealed Cu₃PdN films. The inset shows a magnification of the XRD scan around the SrTiO₃ (002) diffraction peak. (b) Rocking curve around the (002) diffraction peak for annealed Cu₃PdN. (c) ϕ -scan around the (022) peak of annealed Cu₃PdN. (d) Reciprocal space maps for as-grown and annealed Cu₃PdN around the (-113) reflection.

(00*l*)-oriented Cu₃PdN. In Fig. 2(b), we show a XRD rocking curve evaluated at the (002) reflection for annealed Cu₃PdN, which shows a full-width at half-maximum (FWHM) of 1.32° . The in-plane epitaxial arrangement of the films was confirmed by off-axis azimuthal ϕ -scans of the (022) reflection. A representative ϕ -scan for annealed Cu₃PdN is shown in Fig. 2(c). The scan shows four diffraction peaks located 90° apart at identical azimuthal angles as the SrTiO₃ substrate, confirming cube-on-cube epitaxial growth with [100]Cu₃PdNll[100]SrTiO₃ relationship.

Now we focus on the effect of NH_3 annealing on the structural properties of the films. In the inset of Fig. 2(a), we show a 2θ scan around the SrTiO₃ (002) peak, where it is seen that post-annealing in NH₃ results in a shift of the Cu₃PdN (002) peak toward the 2θ value previously reported for bulk Cu₃Pd_{0.989}N single crystals.¹⁹ This result is in agreement with X-ray reciprocal space mapping (RSM) measurements taken around the (-113) reciprocal lattice point [Fig. 2(d)], which shows that post-annealing in NH₃ drives the Cu₃PdN (-113) peak towards a nearly relaxed, bulk-like, state. The in-plane (a_{||}) and out-of-plane (a_{\perp}) lattice constants were determined to be $a_{\parallel} \approx 3.83 \pm 0.01$ Å and $a_{\perp} \approx 3.87 \pm 0.01$ Å for the as-grown sample and $a_{\parallel} \approx 3.84 \pm 0.01$ Å and $a_{\perp} \approx 3.85 \pm 0.01$ Å for the annealed one, which indicates that the shift of the (-113) peak is accompanied with a slight variation of the unit cell volume toward the bulk value. As expected from the low annealing temperature of 330 °C, as-grown and annealed films show insignificant changes in the FWHM values of 2θ , rocking curve, and off-axis peaks, indicating limited changes to the crystallite size and mosaic spread. In order to investigate the effect of possible chemical compositional changes on the structural properties of the films after the post-annealing treatment, we performed the depth profile SIMS analysis.²⁸ The results show an average of $\sim 10\%$ lower nitrogen concentration in the annealed sample compared to the as-grown one (Fig. S1 of the supplementary material). NH₃ annealing generally increases the nitrogen content of nitrides;²⁹ however, the low decomposition temperature of Cu_3PdN limits the annealing temperature below the decomposition temperature of NH_3 ³⁰ where a limited nitrogen activity is expected.

We investigated the surface morphology and microstructure of the films by using atomic force microscopy (AFM) and cross-sectional scanning transmission electron microscopy (STEM), respectively. Figure 3(a) shows an AFM image for as-grown Cu₃PdN films with a typical root mean square surface roughness of ~1 nm. Similar surface morphology was observed in annealed samples, which is a further indication that low-temperature annealing in NH₃ does not produce visible changes to the crystallite size. The presence of surface grains indicates the columnar grain growth mode during the deposition. This is consistent with cross-sectional STEM analyses, which reveal a columnar grain structure with (001)-oriented grains of ~40–50 nm in diameter. The columnar growth mode is usually associated with low surface mobility of incoming atoms during deposition,³¹ which in our case could be related to the limitation of low-temperature growth required to obtain single-phase epitaxial Cu₃PdN films. A low magnification STEM image showing the Cu₃PdN film and the top of the SrTiO₃ substrate is shown in Fig. 3(b). At the interface with the SrTiO₃ substrate, the Cu₃PdN lattice shows some crystallographic defects, including antiphase domains and dislocations. Away

FIG. 3. (a) Characteristic AFM image of Cu_3PdN thin films. (b) Low magnification STEM image showing the Cu_3PdN film and the top of the SrTiO₃ substrate. (c) Atomic resolution STEM-HAADF image away from the interface. On the right, we show a selected area electron diffraction (SAED) pattern obtained in this region (top) and an enlarged region of the image including the [100] projected Cu_3PdN unit cell (bottom).

096103-5 Quintela et al.

from the interface, the crystalline quality of Cu_3PdN substantially improves, as shown in the atomic resolution STEM high-angle annular dark field (HAADF) image in Fig. 3(c) and the corresponding fast Fourier transformation (FFT) pattern.

We now turn to the magneto-transport characterization of the films, performed using the van der Pauw configuration in a liquid-helium cryostat equipped with a 1.5 T magnet. Figures 4(a) and 4(b)show typical temperature dependence of the resistivity (ρ) for both as-grown and annealed films. Upon cooling from room temperature, the electrical resistivity for both samples decreases monotonically down to 20 K, exhibiting metallic behavior as predicted by theory.³²⁻³⁴ The variation of ρ in this temperature range is very small, resulting in a low temperature coefficient of resistivity (TCR = $d\rho/(\rho_0 dT)$, where ρ_0 is the resistivity at 300 K) of $1.5 \times 10^{-4} \text{ K}^{-1}$. Below 20 K, both samples show a small up-turn in the resistivity. Although $\rho(T)$ for both as-grown and annealed films show similar trends, annealed samples show a noticeable reduction of the resistivity of $\sim 30\%$. Furthermore, this resistivity decrease is accompanied by the Hall coefficient (R_H) sign reversal from positive (asgrown) to negative (annealed), as we show in Fig. 4(c). We found that both the R_H sign reversal and ρ change are dependent on annealing time: as seen in Figs. 4(e) and 4(f), increasing the annealing time results in a gradual decrease of ρ and concomitant change of R_H from positive to negative. Furthermore, the changes in ρ and R_H are correlated with the variation of a_{\perp} with annealing time [Fig. 4(d)]. The fact that all ρ , R_H , and a_{\perp} show a similar dependence with annealing time indicates a correlation between electronic properties and nitrogen stoichiometry.

We next discuss the R_H sign reversal in the framework of the electronic band structure of Cu₃PdN. As previously shown in Fig. 1(a), the electronic band structure of Cu₃PdN includes hole and electron-like bands near the Fermi level, so the magneto-transport analysis (R_H sign reversal) requires considering multiple bands. In a simplified two-band model, the Hall resistivity (ρ_{xy}) is described by the following equation:³⁵

$$\rho_{xy} = \frac{\left(p\mu_h^2 - n\mu_e^2\right)B + \mu_h^2\mu_e^2\left(p - n\right)B^3}{\left|e\right|\left[\left(p\mu_h + n\mu_e\right)^2 + \mu_h^2\mu_e^2\left(p - n\right)^2B^2\right]},\tag{1}$$

FIG. 4. (a) Resistivity (ρ) versus temperature data for as-grown and NH₃ post-annealed Cu₃PdN thin films showing a remarkably flat temperature dependence from 5 K to 300 K. (b) Zoom of the resistivity data: metallic conduction is observed from 20 K to 300 K with a small upturn at below 20 K. (c) The Hall coefficient (R_H) versus temperature for as-grown and annealed Cu₃PdN. (d)–(f) show the variation of a_{\perp} , ρ , and R_H and with annealing time (data taken at 300 K).

where *B* is the magnetic field, *e* is the electron charge, and *n*, *p*, μ_e , and μ_h are the electron and hole densities and mobilities. For nearly compensated materials ($n \approx p$) in the limit of low magnetic fields, ρ_{xy} is linearly proportional to B^{36} as

$$\rho_{xy} = \frac{(p\mu_h^2 - n\mu_e^2)}{|e|(p\mu_h + n\mu_e)^2} B = R_H B$$
(2)

in good agreement with our experimental observations (Fig. S2 of the supplementary material). In this scenario, the magnitude and sign of R_H dramatically depend on the relative values of n, p, μ_e , and μ_h . A gradual change from positive to negative R_H , such as that observed in our Cu₃PdN films, indicates a transition from $p\mu_h^2 > n\mu_e^2$ to $p\mu_h^2 < n\mu_e^2$. Based on our SIMS chemical analyses, this transition likely arises from a variation in the carrier concentration driven by a variation in the nitrogen stoichiometry of Cu₃PdN when annealing in NH₃.

To understand the influence of nitrogen stoichiometry on the electronic properties of Cu_3PdN , we performed *ab initio* band-structure calculations using Quantum ESPRESSO package³⁷ with ultrasoft pseudopotentials including SOC. Exchange and correlation effects were treated within the generalized gradient approximation (GGA).³⁸ We used a plane-wave cutoff energy of 40 Ry and a $16 \times 16 \times 16$ k-point mesh in the irreducible Brillouin zone. To simulate the nitrogen deficiency, we uniformly replaced nitrogen atoms with virtual atoms, which have fewer valence electrons than nitrogen, using the virtual crystal approximation (VCA).³⁹ This approach is motivated by previous theoretical studies of the C- and N-deficient metallic antiperovskites $Ni_3AlC_x^{40}$ and $Mn_3AlN_x^{41}$ which demonstrated that the major role of C or N deficiency is to decrease the number of valence electrons and lower E_F . Figure 5(a) shows the calculated band structure of stoichiometric cubic Cu₃PdN which is in good agreement with the band structures reported in Refs. 14 and 15, revealing a Dirac node along the R-M direction, a nearly linear dispersive hole-like band along the R-X direction, and an electron pocket at the Γ point. Since nitrogen deficiency is a common source of non-stoichiometry in nitride antiperovskites,⁴² it is likely that our as-grown Cu₃PdN films are slightly nitrogen deficient. Calculations for Cu₃PdN_{0.98} show that E_F lies below the Dirac point, which opens two hole pockets located along the M-R and R-X symmetry lines, as indicated in Fig. 5(b). These hole pockets may be responsible for the p-type conduction and positive R_H observed experimentally in the as-grown films. Further decrease in the nitrogen content results in a gradual lowering of E_F . As an example, Fig. 5(c) shows that in $Cu_3PdN_{0.9}$, the E_F shifts closer to the bottom of the two free-electron-like bands with minima located at the M and R points. This opens two electron pockets which contribute to n-type conduction and may be responsible for the sign change of R_H observed experimentally in our annealed films. Additionally, as recently proposed,⁴³ small lattice constant variations due to strain could also

FIG. 5. Electronic band structure for cubic stoichiometric Cu_3PdN (a) and nitrogen deficient $Cu_3PdN_{0.98}$ (b) and $Cu_3PdN_{0.9}$ (c). Orange circles indicate the position of the Dirac node. Light blue areas show hole pockets and red areas electron pockets.

modify the band structure of Cu₃PdN, so a more complex scenario combining the effects of strain and nitrogen content could also explain our experimental magneto-transport results.

In conclusion, we have demonstrated the growth of epitaxial thin films of nitride antiperovskite Cu_3PdN , which is the vital first step to unlock its intrinsic physical properties. We show that Cu_3PdN is a metallic conductor, as predicted by theory, and that the magneto-transport properties depend on small variations in the nitrogen content. *Ab initio* band structure calculations show that nitrogen understoichiometry results in a decrease of the Fermi level below the Dirac node. In this context, future research should focus on investigating chemical doping as a possible tool to tune the Fermi level around the Dirac node to access the predicted topological properties of Cu_3PdN . Additionally, given the good lattice match of Cu_3PdN with most of the commonly used oxide perovskite substrates, we anticipate thin film engineering to be a versatile playground to further investigate the electronic properties of Cu_3PdN under epitaxial strain, reduced dimensionality, and at interfaces with other materials.

See supplementary material for SIMS chemical composition analysis and supplementary magneto-transport data.

This work was supported by the National Science Foundation under DMREF Grant No. DMR-1629270. Research at the University of Nebraska-Lincoln was partly supported by the NSF MRSEC (Grant No. DMR-1420645). The work at Nanjing University was supported by the National Natural Science Foundation of China (No. 51302132).

- ¹Z. J. Wang, Y. Sun, X. Q. Chen, C. Franchini, G. Xu, H. M. Weng, X. Dai, and Z. Fang, "Dirac semimetal and topological phase transitions in A₃Bi (A = Na, K, Rb)," Phys. Rev. B 85, 195320 (2012).
- ² Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, "Discovery of a three-dimensional topological Dirac semimetal, Na₃Bi," Science **343**, 864 (2014).
- ³Z. J. Wang, H. M. Weng, Q. S. Wu, X. Dai, and Z. Fang, "Three-dimensional Dirac semimetal and quantum transport in Cd₃As₂," Phys. Rev. B **88**, 125427 (2013).
- ⁴Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, "A stable three-dimensional topological Dirac semimetal Cd₃As₂," Nat. Mater. **13**, 677–681 (2014).
- ⁵ S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, "Experimental realization of a three-dimensional Dirac semimetal," Phys. Rev. Lett. 113, 027603 (2014).
- ⁶ M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Z. Hasan, "Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd₃As₂," Nat. Commun. **5**, 3786 (2014).
- ⁷ T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, "Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd₃As₂," Nat. Mater. 14, 280 (2015).
- ⁸ S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, "Dirac semimetal in three dimensions," Phys. Rev. Lett. **108**, 140405 (2012).
- ⁹ B.-J. Yang and N. Nagaosa, "Classification of stable three-dimensional Dirac semimetals with nontrivial topology," Nat. Commun. 5, 4898 (2014).
- ¹⁰ A. A. Burkov, "Topological semimetals," Nat. Mater. **15**, 1145 (2016).
- ¹¹ X.-L. Qi and S.-C. Zhang, "Topological insulators and superconductors," Rev. Mod. Phys. 83, 1057 (2011).
- ¹² H. Wang, H. Wang, H. Liu, H. Lu, W. Yang, S. Jia, X.-J. Liu, X. C. Xie, J. Wei, and J. Wang, "Observation of superconductivity induced by a point contact on 3D Dirac semimetal Cd₃As₂ crystals," Nat. Mater. **15**, 38 (2016).
- ¹³ D. Samal, H. Nakamura, and H. Takagi, "Molecular beam epitaxy of three-dimensional Dirac material Sr₃PbO," APL Mater. 4, 076101 (2016).
- ¹⁴ Y. Kim, B. J. Wieder, C. L. Kane, and A. M. Rappe, "Dirac line nodes in inversion-symmetric crystals," Phys. Rev. Lett. 115, 036806 (2015).
- ¹⁵ R. Yu, H. Weng, Z. Fang, X. Dai, and X. Hu, "Topological node-line semimetal and Dirac semimetal state in antiperovskite Cu₃PdN," Phys. Rev. Lett. **115**, 036807 (2015).
- ¹⁶ T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, "Flat bands in topological media," JETP Lett. 94, 233 (2011).
- ¹⁷ N. B. Kopnin, T. T. Heikkila, and G. E. Volovik, "High-temperature surface superconductivity in topological flat-band systems," Phys. Rev. B 83, 220503 (2011).
- ¹⁸ E. Tang and L. Fu, "Strain-induced partially flat band, helical snake states and interface superconductivity in topological crystalline insulators," Nat. Phys. **10**, 964 (2014).
- ¹⁹ V. I. Iglovikov, F. Hébert, B. Grémaud, G. G. Batrouni, and R. T. Scalettar, "Superconducting transitions in flat-band systems," Phys. Rev. B 90, 094506 (2014).
- ²⁰ H. Jacobs and U. Zachwieja, "Copper palladium nitride (Cu₃Pd_xN) with x = 0.020 and 0.989 as perovskites with the bound $3d^{10}-4d^{10}$ reciprocal effect," J. Less-Common Met. **170**, 185 (1991).
- ²¹ R. Marchand, Y. Laurent, J. Guyader, P. L'Haridon, and P. Verdier, "Nitrides and oxynitrides: Preparation, crystal chemistry and properties," J. Eur. Ceram. Soc. 8, 197 (1991).

096103-8 Quintela et al.

- ²² The Chemistry of Transition Metal Carbides and Nitrides, edited by S. T. Oyama (Blackie Academic & Professional, Glasgow, Scotland, 1996).
- ²³ D. D. Vaughn II, J. Araujo, P. Meduri, J. F. Callejas, M. A. Hickner, and R. E. Schaak, "Solution synthesis of Cu₃PdN nanocrystals as ternary metal nitride electrocatalysts for the oxygen reduction reaction," Chem. Mater. 26, 6226 (2014).
- ²⁴ J. Jia, M. Shao, G. Wang, W. Deng, and Z. Wen, "Cu₃PdN nanocrystals electrocatalyst for formic acid oxidation," Electrochem. Commun. 71, 61 (2016).
- ²⁵ T. Shiosaki, T. Yamamoto, T. Oda, and A. Kawabata, "Low-temperature growth of piezoelectric AlN film by rf reactive planar magnetron sputtering," Appl. Phys. Lett. **36**, 643 (1980).
- ²⁶ Lattice mismatch ε calculated as $\varepsilon = (a_{\text{STO}} a_{\text{film}})/a_{\text{film}}$, where a_{STO} and afilm are the lattice constants of SrTiO₃ and Cu₃PdN, respectively.
- ²⁷ G. Koster, B. L. Kropman, G. J. H. M. Rijnders, D. H. A. Blank, and H. Rogalla, "Quasi-ideal strontiumtitanate crystal surfaces through formation of Sr-hydroxide," Appl. Phys. Lett. **73**, 2920 (1998).
- ²⁸ SIMS analyses were performed by EAG Laboratories, Sunnyvale, CA.
- ²⁹ C. X. Quintela *et al.*, "Epitaxial CrN thin films with high thermoelectric figure of merit," Adv. Mater. 27, 3032 (2015).
- ³⁰ W. Ramsay and S. Young, "The decomposition of ammonia by heat," J. Chem. Soc. Trans. 45, 88 (1884).
- ³¹ C. V. Thompson, "Structure evolution during processing of polycrystalline films," Annu. Rev. Mater. Sci. 30, 159 (2000).
 ³² U. Hahn and W. Weber, "Electronic structure and chemical-bonding mechanism of Cu₃N, Cu₃PdN, and related Cu(I)
- compounds," Phys. Rev. B **53**, 12684 (1996). ³³ M. Sieberer, S. Khmelevskyi, and P. Mohn, "Magnetic instability within the series TCu_3N (T = Pd, Rh, and Ru): A
- ²⁷ M. Sieberer, S. Khmelevskyi, and P. Mohn, "Magnetic instability within the series TCu₃N (T = Pd, Rh, and Ru): A first-principles study," Phys. Rev. B **74**, 014416 (2006).
- ³⁴ M. G. Moreno-Armenta, W. L. Perez, and N. Takeuchi, "First-principle calculations of the structural and electronic properties of Cu₃MN compounds with M = Ni, Cu, Zn, Pd, Ag, and Cd," Solid State Sci. 9, 166 (2007).
- ³⁵ E. H. Sondheimer and A. H. Wilson, "The theory of the magneto-resistance effects in metals," Proc. R. Soc. A **190**, 435 (1947).
- ³⁶ L. Wang, I. Gutierrez-Lezama, C. Berreteau, N. Ubrig, E. Giannini, and A. F. Morpurgo, "Tuning magnetotransport in a compensated semimetal at the atomic scale," Nat. Commun. 6, 8892 (2015).
- ³⁷ P. Giannozzi *et al.*, "QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials," J. Phys.: Condens. Matter 21, 395502 (2009).
- ³⁸ J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett. 77, 3865 (1996).
- ³⁹ L. Bellaiche and D. Vanderbilt, "Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites," Phys. Rev. B 61, 7877 (2000).
- ⁴⁰ M. Sieberer, P. Mohn, and J. Redinger, "Role of carbon in AlCNi₃ and GaCNi₃: A density functional theory study," Phys. Rev. B **75**, 024431 (2007).
- ⁴¹ D. F. Shao *et al.*, "Role of nitrogen in AlN_xMn₃: A density functional theory study," J. Appl. Phys. **113**, 023905 (2013).
- ⁴² D. Kasugai, A. Ozawa, T. Inagaki, and K. Takenaka, "Effects of nitrogen deficiency on the magnetostructural properties of antiperovskite manganese nitrides," J. Appl. Phys. **111**, 07E314 (2012).
- ⁴³ X. Wang, J. Chen, and D. Xie, "Prospect of node-line semimetal Cu₃PdN to Be a topological superconductor," J. Supercond. Novel Magn. (published online).