858 research outputs found

    The Physics and Mass Assembly of distant galaxies with the E-ELT

    Full text link
    One of the main science goal of the future European Extremely Large Telescope will be to understand the mass assembly process in galaxies as a function of cosmic time. To this aim, a multi-object, AO-assisted integral field spectrograph will be required to map the physical and chemical properties of very distant galaxies. In this paper, we examine the ability of such an instrument to obtain spatially resolved spectroscopy of a large sample of massive (0.1<Mstellar<5e11Mo) galaxies at 2<z<6, selected from future large area optical-near IR surveys. We produced a set of about one thousand numerical simulations of 3D observations using reasonable assumptions about the site, telescope, and instrument, and about the physics of distant galaxies. These data-cubes were analysed as real data to produce realistic kinematic measurements of very distant galaxies. We then studied how sensible the scientific goals are to the observational (i.e., site-, telescope-, and instrument-related) and physical (i.e., galaxy-related) parameters. We specifically investigated the impact of AO performance on the science goal. We did not identify any breaking points with respect to the parameters (e.g., the telescope diameter), with the exception of the telescope thermal background, which strongly limits the performance in the highest (z>5) redshift bin. We find that a survey of Ngal galaxies that fulfil the range of science goals can be achieved with a ~90 nights program on the E-ELT, provided a multiplex capability M Ngal/8.Comment: 21 pages, 13 figures, 7 tables. Accepted for publication in MNRA

    Reproducing properties of MW dSphs as descendants of DM-free TDGs

    Full text link
    The Milky Way (MW) dwarf spheroidal (dSph) satellites are known to be the most dark-matter (DM) dominated galaxies with estimates of dark to baryonic matter reaching even above one hundred. It comes from the assumption that dwarfs are dynamically supported by their observed velocity dispersions. However their spatial distributions around the MW is not at random and this could challenge their origin, previously assumed to be residues of primordial galaxies accreted by the MW potential. Here we show that alternatively, dSphs could be the residue of tidal dwarf galaxies (TDGs), which would have interacted with the Galactic hot gaseous halo and disk. TDGs are gas-rich and have been formed in a tidal tail produced during an ancient merger event at the M31 location, and expelled towards the MW. Our simulations show that low-mass TDGs are fragile to an interaction with the MW disk and halo hot gas. During the interaction, their stellar content is progressively driven out of equilibrium and strongly expands, leading to low surface brightness feature and mimicking high dynamical M/L ratios. Our modeling can reproduce the properties, including the kinematics, of classical MW dwarfs within the mass range of the Magellanic Clouds to Draco. An ancient gas-rich merger at the M31 location could then challenge the currently assumed high content of dark matter in dwarf galaxies. We propose a simple observational test with the coming GAIA mission, to follow their expected stellar expansion, which should not be observed within the current theoretical framework.Comment: 17 pages, 11 figures, accepted by the Monthly Notices of the Royal Astronomical Society (MNRAS

    The vast thin plane of M31 co-rotating dwarfs: an additional fossil signature of the M31 merger and of its considerable impact in the whole Local Group

    Full text link
    The recent discovery by Ibata et al. (2013) of a vast thin disk of satellites (VTDS) around M31 offers a new challenge for the understanding of the Local Group properties. This comes in addition to the unexpected proximity of the Magellanic Clouds (MCs) to the Milky Way (MW), and to another vast polar structure (VPOS), which is almost perpendicular to our Galaxy disk. We find that the VTDS plane is coinciding with several stellar, tidally-induced streams in the outskirts of M31, and, that its velocity distribution is consistent with that of the Giant Stream (GS). This is suggestive of a common physical mechanism, likely linked to merger tidal interactions, knowing that a similar argument may apply to the VPOS at the MW location. Furthermore, the VTDS is pointing towards the MW, being almost perpendicular to the MW disk, as the VPOS is. We compare these properties to the modelling of M31 as an ancient, gas-rich major merger, which has been successfully used to predict the M31 substructures and the GS origin. We find that without fine tuning, the induced tidal tails are lying in the VTDS plane, providing a single and common origin for many stellar streams and for the vast stellar structures surrounding both the MW and M31. The model also reproduces quite accurately positions and velocities of the VTDS dSphs. Our conjecture leads to a novel interpretation of the Local Group past history, as a gigantic tidal tail due to the M31 ancient merger is expected to send material towards the MW, including the MCs. Such a link between M31 and the MW is expected to be quite exceptional, though it may be in qualitative agreement with the reported rareness of MW-MCs systems in nearby galaxies.Comment: Accepted for publication in MNRAS, 8 pages, 3 figure

    Quality Assessment of Oenological Tannins Utilising Global Selectivity Chemical Sensors Array (“Electronic Tongue”)

    Get PDF
    Oenological tannin is a common name for food additives containing tannins utilised in winemaking practices. The maintaste feature of oenological tannin is the taste sensation of astringency and bitterness. In the present paper, samples ofvarious oenological tannins (oak, chestnut, gall, tara, querbacho, grape seed and grape skin tannins) were analysed bymeans of a tasting panel, measuring the flavour attributes bitterness, astringency, body, duration of flavour and similaritywith wine tannins, and using the array of global selectivity chemical sensors (electronic tongue) “α-ASTREE” Liquid andTaste Analyzer (Alpha M.O.S., Toulouse, France). Principal component analysis of the electronic tongue outputs appliedfor different tannin solutions provides good discrimination according to their chemical nature. Consequently, three mainclasses of oenological tannins, namely gallotannins, ellagitannins and condensed tannins, could be identified and separated.The global output of the electronic tongue is quite responsive to changes in the bitterness and astringency of model quinineand alum solutions and, once calibrated (correlation coefficients of 0.976 (p&lt;0.001) and 0.996 (p&lt;0.001) respectively) couldquantify their concentrations with good precision. The electronic tongue output was found to be correlated with the flavourattributes of oenological tannins. The best correlation was observed for bitterness. This fact could be explained by moreconstant calibration and lesser influence of any interfering factors on this attribute

    The Formation of Large Galactic Disks: Revival or Survival?

    Full text link
    Using the deepest and the most complete set of observations of distant galaxies, we investigate how extended disks could have formed. Observations include spatially-resolved kinematics, detailed morphologies and photometry from UV to mid-IR. Six billion years ago, half of the present-day spiral progenitors had anomalous kinematics and morphologies, as well as relatively high gas fractions. We argue that gas-rich major mergers, i.e., fusions between gas-rich disk galaxies of similar mass, can be the likeliest driver for such strong peculiarities. This suggests a new channel of disk formation, e.g. many disks could be reformed after gas-rich mergers. This is found to be in perfect agreement with predictions from the state-of-the-art LCDM semi-empirical models: due to our sensitivity in detecting mergers at all phases, from pairs to relaxed post-mergers, we find a more accurate merger rate. The scenario can be finally confronted to properties of nearby galaxies, including M31 and galaxies showing ultra-faint, gigantic structures in their haloes.Comment: Proceedings of the annual meeting of the French Astronomical Society, 2011, 6 pages, 1 Figur

    IMAGES I. Strong evolution of galaxy kinematics since z=1

    Get PDF
    (abbreviated) We present the first results of the ESO large program, ``IMAGES'' which aims at obtaining robust measurements of the kinematics of distant galaxies using the multi-IFU mode of GIRAFFE on the VLT. 3D spectroscopy is essential to robustly measure the often distorted kinematics of distant galaxies (e.g., Flores et al. 2006). We derive the velocity fields and σ\sigma-maps of 36 galaxies at 0.4<z<0.75 from the kinematics of the [OII] emission line doublet, and generate a robust technique to identify the nature of the velocity fields based on the pixels of the highest signal-to-noise ratios (S/N). We have gathered a unique sample of 63 velocity fields of emission line galaxies (W0([OII]) > 15 A) at z=0.4-0.75, which are a representative subsample of the population of M_stellar>1.5x10^{10} M_sun emission line galaxies in this redshift range, and are largely unaffected by cosmic variance. Taking into account all galaxies -with or without emission lines- in that redshift range, we find that at least 41+/-7% of them have anomalous kinematics, i.e., they are not dynamically relaxed. This includes 26+/-7% of distant galaxies with complex kinematics, i.e., they are not simply pressure or rotationally supported. Our result implies that galaxy kinematics are among the most rapidly evolving properties, because locally, only a few percent of the galaxies in this mass range have complex kinematics.Comment: 17 pages, 6 figures, Accepted by A&

    Sur lÊŒorigine morphologique des Ă©coulements par lÊŒanalyse dÊŒobservations hydrologiques distribuĂ©es. Application Ă  deux bassins versants cĂ©venols (Gard, France)

    Get PDF
    Cet article se propose d’étudier les relations qu’entretient la morphologie des bassins et de leurs rĂ©seaux hydrographiques avec les dĂ©bits survenant lors des crues. Des descripteurs morphologiques issus de l’analyse de modĂšle numĂ©rique de terrain (MNT) par un algorithme original sont confrontĂ©s Ă  des mesures de dĂ©bits effectuĂ©es sous Ă©pisodes et spatialement distribuĂ©es Ă  l’intĂ©rieur de deux bassins expĂ©rimentaux situĂ©s au sein du bassin du Gardon d’Anduze (Gard). Les rĂ©sultats montrent l’influence des surfaces drainĂ©es sur les dĂ©bits mesurĂ©s et font apparaĂźtre deux types de fonctionnement des rĂ©seaux hydrographiques : un fonctionnement de type rĂ©seau principal, dans lequel les dĂ©bits observent une relation puissante avec les surfaces drainĂ©es, et un fonctionnement de type rĂ©seau secondaire, dans lequel les dĂ©bits ne peuvent ĂȘtre expliquĂ©s ni par la surface drainĂ©e ni par les descripteurs morphologiques Ă©tudiĂ©s. Ces rĂ©sultats font ainsi apparaĂźtre la distinction entre des fonctionnements de type versant et de type rĂ©seau. Ils mettent Ă©galement en avant les diffĂ©rences entre les deux bassins expĂ©rimentaux Ă©tudiĂ©s, notamment la variabilitĂ© spatiale des deux types de fonctionnements et l’influence prĂ©dominante de la gĂ©ologie et de la pĂ©dologie des sites sur les mĂ©canismes de mise en eau des rĂ©seaux hydrographiques

    A forming, dust enshrouded disk at z=0.43: the first example of a late type disk rebuilt after a major merger?

    Full text link
    Abreg: By combining HST/UDF imagery with kinematics from VLT/GIRAFFE we derive a physical model of distant galaxy J033245.11-274724.0 in a way similar to what can be done in the nearby Universe. Here we study the properties of a distant compact LIRGs galaxy. Given the photometric and spectro photometric accuracies, we can decompose the galaxy in sub components and correct them for reddening. The galaxy is dominated by a dust enshrouded disk revealed by UDF imagery. The disk radius is half that of the Milky Way and the galaxy have a SFR=20Mo/yr. Morphology and kinematics show that gas and stars together spiral inwards rapidly to feed the disk and the central regions. A combined system of a bar and two non rotating spiral arms regulates the material accretion, induces large sigma, with sigma larger than 100 km/s and redistributes the angular momentum (AM). The detailed physical properties resemble to the expectations from modeling a merger of two equal mass, gaseous rich galaxies, 0.5 Gyr after the merger. In its later evolution, this galaxy could become a late type galaxy which falls on the T-F relation, with an AM mostly induced by the orbital AM of the merger.Comment: (1) GEPI observatoire de Paris Meudon (2) LAM (3) ESO Garching (4) IAP Accepted for publication in A&

    531 new spectroscopic redshifts from the CDFS and a test on the cosmological relevance of the GOODS-South field

    Get PDF
    (Abbrev.) This paper prepares a series of papers analysing the Intermediate MAss Galaxy Evolution Sequence (IMAGES) up to z=1. Intermediate mass galaxies (MJ <=-20.3) are selected from the Chandra Deep Field South (CDFS) for which we identify a serious lack of spectroscopically determined redshifts..... We have spectroscopically identified 691 objects including 580 gal., 7 QSOs, and 104 stars. This study provides 531 new redshifts in the CDFS. It confirms the presence of several large scale structures in the CDFS. To test the impact of these structures in the GOODS-South field, we ... compare the evolution of rest-frame U, B, V and K galaxy luminosity densities to that derived from the CFRS. The CDFS field shows a significant excess of luminosity densities in the z=0.5-0.75 range, which increases with the wavelength, reaching up to 0.5 dex at 2.1 um. Stellar mass and specific star formation evolutions might be significantly affected by the presence of the peculiar large scale structures at z= 0.668 and at z= 0.735, that contain a significant excess of evolved, massive galaxies when compared to other fields. This leads to a clear warning to results based on the CDFS/GOODS South fields, especially those related to the evolution of red luminosity densities, i.e. stellar mass density and specific star formation rate. Photometric redshift techniques, when applied to that field, are producing quantities which are apparently less affected by cosmic variance (0.25 dex at 2.1 um), however at the cost of the difficulty in disentangling between evolutionary and cosmic variance effects.Comment: Accepted for publication in A&A, 19 pages, 13 figure
    • 

    corecore