15,900 research outputs found
The Implementation of the power supply system of the CMS Silicon Strip Tracker
The power supply system of the silicon strip tracker of the CMS experiment provides HV bias and LV power to the 15000 modules of the detector, arranged into 1944 “power groups” and 256 “control rings”. Around 1200 power supply modules, disposed on 29 racks, operate in a “hostile” radiation and magnetic field environment, 10 m away from the beam crossing region. They power the detector through≃ 50 m long custom-designed “Low Impedance” cables, adopting the sensing wire technique to compensate voltage drops. Detector “power groups” and “control groups” are powered bymodules of different architecture,which are fed by 48 V sources, provided by AC-DC converters installed in the racks. This paper reports the experience acquired in the implementation of the system, the rack layout, the grounding scheme, the power budget, the heat dissipation on racks. A comprehensive Quality Assurance program ensured the performance, using a well defined protocol, shared with the board’s manufacturer, for acceptance tests and failure detection
Scaling asymptotics for quantized Hamiltonian flows
In recent years, the near diagonal asymptotics of the equivariant components
of the Szeg\"{o} kernel of a positive line bundle on a compact symplectic
manifold have been studied extensively by many authors. As a natural
generalization of this theme, here we consider the local scaling asymptotics of
the Toeplitz quantization of a Hamiltonian symplectomorphism, and specifically
how they concentrate on the graph of the underlying classical map
Propagating and evanescent internal waves in a deep ocean model
We present experimental and computational studies of the propagation of
internal waves in a stratified fluid with an exponential density profile that
models the deep ocean. The buoyancy frequency profile (proportional to
the square root of the density gradient) varies smoothly by more than an order
of magnitude over the fluid depth, as is common in the deep ocean. The
nonuniform stratification is characterized by a turning depth , where
is equal to the wave frequency and .
Internal waves reflect from the turning depth and become evanescent below the
turning depth. The energy flux below the turning depth is shown to decay
exponentially with a decay constant given by , which is the horizontal
wavenumber at the turning depth. The viscous decay of the vertical velocity
amplitude of the incoming and reflected waves above the turning depth agree
within a few percent with a previously untested theory for a fluid of arbitrary
stratification [Kistovich and Chashechkin, J. App. Mech. Tech. Phys. 39,
729-737 (1998)].Comment: 13 pages, 4 figures, 4 table
Exploiting structure in piecewise affine identification of LFT systems
Identification of interconnected systems is a challenging problem in which it is crucial to exploit the available knowledge about the interconnection structure. In this paper, identification of discrete-time nonlinear systems composed by interconnected linear
and nonlinear systems, is addressed. An iterative identification procedure is proposed, which alternates the estimation of the linear and the nonlinear components. Standard identification techniques are applied to the linear subsystem, whereas recently developed piecewise affine (PWA) identification techniques are employed for modelling the nonlinearity. A numerical
example analyzes the benefits of the proposed structure-exploiting identification algorithm compared to applying black-box PWA identification techniques to the overall system
Local trace formulae and scaling asymptotics in Toeplitz quantization
A trace formula for Toeplitz operators was proved by Boutet de Monvel and
Guillemin in the setting of general Toeplitz structures. Here we give a local
version of this result for a class of Toeplitz operators related to continuous
groups of symmetries on quantizable compact symplectic manifolds. The local
trace formula involves certain scaling asymptotics along the clean fixed locus
of the Hamiltonian flow of the symbol, reminiscent of the scaling asymptotics
of the equivariant components of the Szeg\"o kernel along the diagonal
Reflection High-Energy Electron Diffraction oscillations during epitaxial growth of artificially layered films of (BaCuOx)m /(CaCuO2)n
Pulsed Laser Deposition in molecular-beam epitaxy environment (Laser-MBE) has
been used to grow high quality BaCuOx/CaCuO2 superlattices. In situ Reflection
High Energy Electron Diffraction (RHEED) shows that the growth mechanism is
2-dimensional. Furthermore, weak but reproducible RHEED intensity oscillations
have been monitored during the growth. Ex-situ x-ray diffraction spectra
confirmed the growth rate deduced from RHEED oscillations. Such results
demonstrate that RHEED oscillations can be used, even for (BaCuOx)2/(CaCuO2)2
superlattices, for phase locking of the growth.Comment: 9 pages, 5 figures. Corresponding author: Dr. A. Tebano:
[email protected]
Feedback Linearization in Systems with Nonsmooth Nonlinearities
This paper aims to elucidate the application of feedback linearization in systems having nonsmooth nonlinearities. With the aid of analytical expressions originating from classical feedback linearization theory, it is demonstrated that for a subset of nonsmooth systems, ubiquitous in the structural dynamics and vibrations community, the theory holds soundly. Numerical simulations on a three-degree-of-freedom aeroservoelastic system are carried out to illustrate the application of feedback linearization for a specific control objective, in the presence of dead-zone and piecewise linear structural nonlinearities in the plant. An in-depth study of the arising zero dynamics, based on a combination of analytical formulations and numerical simulations, reveals that asymptotically stable equilibria exist, paving the way for the application of feedback linearization. The latter is demonstrated successfully through pole placement on the linearized system
No more time to stay ‘single’ in the detection of Anisakis pegreffii, A. simplex (s. s.) and hybridization events between them: a multi-marker nuclear genotyping approach
A multi-marker nuclear genotyping approach was performed on larval and adult specimens of Anisakis spp. (N = 689) collected from fish and cetaceans in allopatric and sympatric areas of the two species Anisakis pegreffii and Anisakis simplex
(s. s.), in order to: (1) identify specimens belonging to the parental taxa by using nuclear markers (allozymes loci) and sequence analysis of a new diagnostic nuclear DNA locus (i.e. partial sequence of the EF1 α−1 nDNA region) and (2) recognize hybrid categories. According to the Bayesian clustering algorithms, based on those markers, most of the individuals
(N = 678) were identified as the parental species [i.e. A. pegreffii or A. simplex (s. s.)], whereas a smaller portion (N = 11)
were recognized as F1 hybrids. Discordant results were obtained when using the polymerase chain reaction–restriction
fragment length polymorphisms (PCR–RFLPs) of the internal transcribed spacer (ITS) ribosomal DNA (rDNA) on
the same specimens, which indicated the occurrence of a large number of ‘hybrids’ both in sympatry and allopatry.
These findings raise the question of possible misidentification of specimens belonging to the two parental Anisakis and
their hybrid categories derived from the application of that single marker (i.e. PCR–RFLPs analysis of the ITS of
rDNA). Finally, Bayesian clustering, using allozymes and EF1 α−1 nDNA markers, has demonstrated that hybridization
between A. pegreffii and A. simplex (s. s.) is a contemporary phenomenon in sympatric areas, while no introgressive hybridization takes place between the two species
Explicit characterization of the identity configuration in an Abelian Sandpile Model
Since the work of Creutz, identifying the group identities for the Abelian
Sandpile Model (ASM) on a given lattice is a puzzling issue: on rectangular
portions of Z^2 complex quasi-self-similar structures arise. We study the ASM
on the square lattice, in different geometries, and a variant with directed
edges. Cylinders, through their extra symmetry, allow an easy determination of
the identity, which is a homogeneous function. The directed variant on square
geometry shows a remarkable exact structure, asymptotically self-similar.Comment: 11 pages, 8 figure
Infection levels and species diversity of ascaridoid nematodes in Atlantic cod, Gadus morhua, are correlated with geographic area and fish size
Atlantic cod (Gadus morhua) is among the most important commercial fish species on the world market. Its
infection by ascaridoid nematodes has long been known, Pseudoterranova even being named cod worm. In the
present study, 755 individuals were sampled in the Barents, Baltic and North Seas during 2012–2014.
Prevalences for Anisakis in whole fish and in fillets in the different fishing areas varied from 16 to 100% and
from 12 to 90% respectively. Abundance was also greatly influenced by the sampling area. Generalized additive
model results indicate higher numbers of Anisakis in the North Sea, even after the larger body size was accounted
for. Numbers and prevalence of Anisakis were positively related to fish length or weight. The prevalence of
parasites in whole fish and in fillets was also influenced by the season, with the spring displaying a peak for the
prevalence in whole fish and, at the same time, a drop for the prevalence in fillets. Whereas 46% of cod had
Anisakis larvae in their fillets, the majority (39%) had parasites mainly in the ventral part of the fillet and only
12% had parasites in their dorsal part. This observation is of importance for the processing of the fish. Indeed,
the trimming of the ventral part of the cod fillet would allow the almost total elimination of ascaridoids except
for cod from the Baltic Sea where there was no difference between the dorsal and the ventral part.
The presence of other ascaridoid genera was also noticeable in some areas. For Pseudoterranova, the highest
prevalence (45%) in whole fish was observed in the Northern North Sea, whereas the other areas had prevalences between 3 and 16%. Contracaecum was present in every commercial size cod sampled in the Baltic Sea
with an intensity of up to 96 worms but no Contracaecum was isolated from the Central North Sea. Non-zoonotic
Hysterothylacium was absent from the Baltic Sea but with a prevalence of 83% in the Barents and the Northern
North Sea.
A subsample of worms was identified with genetic-molecular tools and assigned to the species A. simplex (s.s.),
A. pegreffii, P. decipiens (s.s.), P. krabbei, C. osculatum and H. aduncum. In addition to high prevalence and
abundance values, the cod sampled in this study presented a diversity of ascaridoid nematodes with a majority of
fish displaying a co-infection. Out of 295 whole infected fish, 269 were co-infected by at least 2 genera
- …
