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Abstract: Identification of interconnected systems is a challenging problem in which it
is crucial to exploit the available knowledge about the interconnection structure. In this
paper, identification of discrete-time nonlinear systems composed by interconnected linear
and nonlinear systems, is addressed. An iterative identification procedure is proposed, which
alternates the estimation of the linear and the nonlinear components. Standard identification
techniques are applied to the linear subsystem, whereas recently developed piecewise affine
(PWA) identification techniques are employed for modelling the nonlinearity. A numerical
example analyzes the benefits of the proposed structure-exploiting identification algorithm
compared to applying black-box PWA identification techniques to the overall system.

1. INTRODUCTION

Real world systems often consist of interconnected lin-
ear and nonlinear components. Models for interconnected
systems range from the well-known Hammerstein and
Wiener systems, to more complex networked structures. A
quite general framework for representing system intercon-
nections is based on the linear fractional transformation
(LFT) modeling formalism (see, e.g., Hsu et al. [2005a]).
Applying black-box identification techniques to LFT sys-
tems has the drawback that the resulting model does not
reflect the internal structure of the system, and may need a
large number of parameters to reach the required accuracy.
On the other hand, exploiting the knowledge about the
structure of the interconnection is not only expected to
improve the accuracy of the estimated model, but also
to reduce the computational burden of the identification
procedure. In spite of this, identification of interconnected
systems has received little attention so far. Previdi and
Lovera [2003] set up a parameter estimation procedure
for models in LFT form where the forward part is rep-
resented by a classical linear regression and the feedback
part is given by a nonlinear dynamic map parameterized
by a neural network. A new paradigm for identification of
interconnected systems has been introduced in Hsu et al.
[2005a,b, 2006], where the authors consider LFT intercon-
nections of linear dynamic systems and static nonlinear
maps. Under the assumption that the linear part is known,
several nonparametric estimation algorithms for the static
nonlinear maps are proposed.

This paper addresses the identification of an LFT inter-
connection composed by a linear and a nonlinear system,
both of which are unknown. The proposed solution relies
on an iterative scheme that alternates the identification
of the linear and the nonlinear part. Iterative procedures

have been widely used in nonlinear system identification,
starting from the seminal work by Narendra and Gall-
man [1966]. In our approach, standard linear identification
techniques are employed to identify the linear part of the
system. Moreover, we choose to represent the system non-
linearity by a piecewise affine (PWA) model. This is mainly
motivated by the universal approximation properties of
PWA maps [Lin and Unbehauen, 1992, Breiman, 1993].
PWA system identification is a challenging problem that
has received an increasing attention in recent years, and
a number of identification techniques have been proposed
(see Roll [2003] and Paoletti et al. [2007] for an extensive
overview). Here we adopt the bounded-error procedure for
identification of piecewise affine ARX (PWARX) models
presented in Bemporad et al. [2005], which does not require
to fix a priori the number of modes of the PWA map, but
estimates such a number from data. Numerical examples
have shown that the proposed iterative scheme is able
to successfully profit from the knowledge of the system
interconnection structure. The framework considered in
this paper contains the framework in Pepona et al. [2007]
as a particular case.

The paper is organized as follows. The considered identifi-
cation problem is introduced in Section 2, while Section 3
describes the proposed identification algorithm. In Sec-
tion 4, a detailed numerical example both clarifies several
aspects of the identification problem and illustrates the
effectiveness of the identification algorithm. Conclusions
and future research directions are summarized in Section 5.

2. PROBLEM FORMULATION

We consider discrete-time networked dynamical systems
formed by the interconnection of linear and nonlinear
components. By a suitable rearrangement, these intercon-
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nected systems can be always recast into the LFT form of

Fig. 1, where the block L =

[
Lyu Lye Lyw

Lzu Lze Lzw

]
is a linear

time-invariant dynamical system (partitioned as usual in
control theory), while the block N takes into account the
system nonlinearities. Signals ut, yt and et are the system
input, output and noise at time t ∈ Z, while zt and wt are
internal signals representing the input and the output of
the nonlinear block. In this preliminary work, we restrict
our attention to ut, yt and wt being scalar signals.

The question we address is how to exploit the structure
information for identifying both the linear part L and the
nonlinear part N of the system in Fig. 1. A careful analysis
of the problem highlights that input-output data {ut, yt}
and prior information about the interconnection structure
are still not sufficient to allow for the estimation of both
L and N . Additional information concerning the internal
signals of the system is needed to tackle somehow the
problem. In this respect, we distinguish three situations:

i) Both zt and wt are known.

ii) wt is known, while zt is unknown.

iii) zt is known, while wt is unknown.

In case i), the identification problem does not present
particular difficulties, since it can be decomposed into the
separate identification of the linear system L and of the
nonlinear system N , which are well-studied problems. On
the other hand, only the part [ Lyu Lye Lyw ] of L can be
identified in case ii). We thus argue that case iii) is the
most general situation worth of investigation if one wants
to identify both L and N .

Based on the above discussion, we tackle the identification
problem for the system in Fig. 1 under the following main
assumption.

Assumption 1. The signal zt is either measured or can be
inferred from past inputs ut and outputs yt, i.e. there exists
a known stable linear system M such that zt = M [ ut

yt
].

Assumption 1 is similar to the “measurability” assumption
on zt adopted by Hsu et al. [2005a,b, 2006] in a context
where L is known and only N needs to be identified. Stabil-
ity of M is required to cope with uncertainty on its initial
condition. We also consider the following assumption.

Assumption 2. The nonlinear part N is static.

Assumption 2 is only motivated by the tests we have
carried out so far, and will be possibly removed in the
final version of this paper, as discussed in Remark 3.1.

We are now ready to state the identification problem
addressed in this paper.

Problem 1. Given the data set {ut, yt,zt}
N
t=1, identify a

model of the LFT system in Fig. 1 of the following type:

A(q)yt = B(q)ut−nk
+ G(q)wt + εt (1a)

wt = f(zt), (1b)

where the ARX model (1a) describes the linear part L,
and the static map f(·) in (1b) is a PWA approximation
of the static nonlinearity N . 2

In (1a), εt ∈ R is the error term, and A(q), B(q), G(q) are
finite polynomials in the delay operator q−1, namely:

L

N

ut

et

yt

wt zt

Fig. 1. LFT model structure.

A(q) = 1 + a1q
−1 + . . . + ana

q−na (2a)

B(q) = b0 + b1q
−1 + . . . + bnb

q−nb (2b)

G(q) = 1 + g1q
−1 + . . . + gng

q−ng . (2c)

Without loss of generality, the first coefficient in (2c) is
taken equal to 1, since it is always possible to scale the
nonlinear map f(·). In the following, it will be useful to
rewrite (1a) in regression form as follows:

yt = ϑT ϕt + wt + εt, (3)

where ϑ = [ ϑT
ζ ϑT

ω ]T is the unknown parameter vector,
formed by

ϑζ = [ a1 . . . ana
b0 b1 . . . bnb

]T (4a)

ϑω = [ g1 . . . gng
]T , (4b)

and ϕt = [ ζT
t ωT

t ]T is the (partially unknown) regression
vector, formed by

ζt = [ −yt−1 . . . − yt−na
ut−nk

. . . ut−nk−nb+1 ]T (5a)

ωt = [ wt−1 . . . wt−ng
]T . (5b)

Remark 2.1. The linear part L of the LFT system can
be described in a variety of ways. State space models or
pseudolinear regression models (like ARMAX, OE, BJ,
etc.), can be adopted. An ARX model has been chosen
in (1a) in order to simplify the presentation. 2

The PWA map f(·) in (1b) has the form:

f(z) = θT
i

[
z

1

]
if z ∈ Zi, i = 1, . . . , s, (6)

where s is the number of modes, θi ∈ R
nz+1, i =

1, ..., s, are the parameters of each mode, and {Zi}
s
i=1 is

a complete polyhedral partition of the domain Z ⊆ R
nz

where f(·) is defined.

3. IDENTIFICATION ALGORITHM

The most challenging issue in Problem 1 is the fact that
the internal signal wt is not measured, and hence it must
be estimated along with the polynomials A(q), B(q), and
G(q). To this aim, we propose an iterative identification
procedure which alternates the estimation of the linear and
the nonlinear part. Assuming the linear part known, it is
possible to recover wt by means of smoothing techniques,
as suggested in Claassen [2001]. Then, a PWA map f(·)
can be fitted to the pairs (wt,zt). On the other hand, if wt

is known, the identification of the linear part can be eas-
ily carried out by means of standard linear identification
techniques. The above discussion suggests the formulation
of the iterative identification algorithm summarized in Ta-
ble 1. After an initialization step, each algorithm iteration
consists of two stages, namely the PWA approximation of



Table 1. Iterative identification algorithm

Given: ϑ0, γ

Set: j = 0

Repeat

Set: j = j + 1

% PWA approximation of the nonlinear part

Estimate {vj
t } according to (8)

Fit a PWA map fj(·) to the samples (zt, v
j
t )

Compute w
j
t as in (9)

% Identification of the linear part

Compute ϑj from the linear regression (10)

Until ‖ϑj − ϑj−1‖ ≤ γ ‖ϑj‖

Return: ϑj , fj(·)

the nonlinear part and the identification of the linear part.
These steps are described below.

Remark 3.1. The ideas of the proposed identification al-
gorithm can be straightforwardly extended to the case of
dynamical nonlinearity N modelled by a PWARX model
of the type wt = f(φt), with f(·) a PWA map and φt a
finite-length regression vector composed by past values of
wt and zt. At present time, we have only devised to test
our algorithm in such a case, and plan to include results of
our tests (including real applications), if any, in the final
version of this paper. 2

3.1 Initialization

An estimate ϑ 0 of the parameter vector ϑ in (3) must be
provided for initialization. A rule of thumb is to estimate
the part ϑ 0

ζ of ϑ 0 by fitting the ARX model

A(q)yt = B(q)ut−nk
+ w̄ + εt (7)

to the data through standard linear identification tech-
niques, and setting all the components of ϑ 0

ω equal to zero.
The constant term w̄, to be estimated in (7), accounts for
the effects of the neglected terms depending on the un-
known signal wt (i.e. for the presence of the nonlinearity).

In the following, let j = 1, 2, . . . be the iteration counter,
and ϑj−1 be the estimate of ϑ in (3) computed at iteration
j − 1. Moreover, let n̄ = max{na, nb + nk − 1, ng}.

3.2 PWA approximation of the nonlinear part

Given the estimate ϑj−1 of the ARX coefficients, standard
smoothing techniques are used to recover a suitable signal
{vj

t }
N
t=n̄−ng+1 according to the estimated linear dynamics

yt = (ϑj−1
ζ )T ζt + v

j
t + (ϑj−1

ω )T




v
j

t−1

...
v

j

t−ng


 + εt, (8)

with t = n̄ + 1, ..., N . Note that (8) is obtained by
replacing ϑ with ϑj−1 in (3). In general, the role of
the error term εt depends on the particular smoothing
algorithm chosen. A very simple choice for the considered
ARX model is to set εt = 0 for all t, and then to recover

the signal v
j
t as a particular solution of the set of linear

equations resulting from (8).

The next step is to fit a PWA map f j(·) to the samples

(zt, v
j
t ), t = n̄ − ng + 1, . . . , N . To this aim we adopt

the bounded-error procedure proposed in Bemporad et al.
[2005]. An attractive feature of this method is that the
number of modes of the PWA map is automatically esti-
mated from data. given the maximum allowable approxi-
mation error.

After reconstructing the PWA map f j(·), an estimate of
the unknown sequence {wt}

N
t=n̄−ng+1 can be obtained as

w
j
t = f j(zt), t = n̄ − ng + 1, . . . , N. (9)

It is stressed that, in the proposed scheme, v
j
t is seen as a

“noisy” version of w
j
t , where by “noisy” it is meant that

v
j
t will typically include the effects of both the system

noise and the model error. Hence, the role of the PWA
approximation stage is not only to provide an analytic
expression of the static nonlinearity, but also to improve
the smoothing of the unknown signal wt. This feature of
the proposed procedure is illustrated through examples in
the bottom part of Fig. 4.

3.3 Identification of the linear part

Given the estimated signal {wj
t}

N
t=n̄−ng+1, one can form

the estimated regression vectors {ϕj
t}

N
t=n̄+1 by replacing wt

with w
j
t in the definition (5b) of ωt. Then, an estimate ϑj

of the ARX coefficients can be computed through standard
linear identification techniques from the model equation

yt − w
j
t = (ϑj)T ϕ

j
t + εt, t = n̄ + 1, . . . , N. (10)

The procedure terminates when no significant changes
occur to the estimated ARX coefficients between two
consecutive iterations. This criterion is implemented by
checking if

‖ϑj − ϑj−1‖ ≤ γ ‖ϑj‖, (11)
where γ is a positive threshold defined by the user, and
‖ · ‖ denotes the Euclidean norm of a vector.

4. NUMERICAL EXAMPLE

In this section, we apply the proposed identification algo-
rithm to an interconnected system with a sigmoid static
nonlinearity. Hence, the true system does not belong to the
considered model class. Identification results for different
noise levels are compared with those obtained by fitting
directly to the input-output data {ut, yt} a black-box
PWARX model of the type

yt = g(rt) + ǫt, (12)

where g(·) is a PWA map, rt is a finite-length regression
vector composed by past inputs and outputs, and ǫt is
an error term. Given δ > 0, the adopted bounded-error
identification procedure [Bemporad et al., 2005] estimates
a PWARX model with minimum number of modes such
that the condition |ǫt| ≤ δ is satisfied for all data points
in the estimation data set.

Consider the Lur’e system in Fig. 2. The linear system L̃
is described by the ARX model:

yt = − ã1 yt−1 − ã2 yt−2 + b1 (ut−1 − w̃t−1)

+ b2 (ut−2 − w̃t−2) + et,
(13)



+

−

ut

et yt

w̃t

L̃

Ñ

Fig. 2. Lur’e system of the example of Section 4.

where ã1 = −1.20, ã2 = 0.85, b1 = 1.00, b2 = −0.10, while

the static block Ñ is the sigmoid function

Ñ (z) =
1 − e−5z

1 + e−5z
. (14)

An equivalent representation of the Lur’e system in the
LFT form of Fig. 1 can be obtained by defining

wt = −ã1 yt−1 − b1 w̃t−1. (15)

Note that w̃t−1 = Ñ (yt−1), and hence we can write
wt = N (zt) with zt = yt−1 and

N (z) = −ã1 z − b1 Ñ (z). (16)

Moreover, by substituting (15) into (13), the linear system
L of the LFT form is described by the equations

yt = −a2 yt−2 + b1 ut−1 + b2 ut−2 (17a)

+ wt + g1 wt−1 + et

zt = yt−1, (17b)

where a2 = ã2 −
ã1b2

b1
= 0.73 and g1 =

b2

b1
= −0.10. In the

following, we apply the iterative algorithm of Section 3 to
identify an LFT model (1) of the Lur’e system with the
linear part L having the structure (17).

The identification experiment is carried out by exciting
the Lur’e system with input ut uniformly distributed in
[−1.5, 1.5], while the noise et is assumed to be uniformly
distributed in [−ηe, ηe], ηe > 0. Two data sets of N = 1000
data points (ut, yt, zt) are generated for different noise
levels: ηe = 0.05 in the first data set, and ηe = 0.25 in
the second data set.

4.1 Dataset with ηe = 0.05

As described in Section 3.1, the iterative algorithm is
initialized with estimates a0

2 = 0.4936, b0
1 = 0.9984 and

b0
2 = 0.6572 obtained by fitting the ARX model

yt = −a0
2 yt−2 + b0

1 ut−1 + b0
2 ut−2 + w̄ 0 + εt (18)

to the data by least squares, while g0
1 is set equal to 0.

At each iteration, the bounded-error procedure [Bemporad
et al., 2005] is applied to approximate the static nonlin-
earity, while least squares are used for estimation of the
ARX coefficients. By setting γ = 0.001, the algorithm ter-
minates after 13 iterations. The sequence of the estimates
of the ARX coefficients is plotted in Fig. 3, showing the
convergence of the iterative procedure. Note that, while
the parameter b1 is well estimated already from the begin-
ning, the parameter b2 is poorly initialized with even the
wrong sign. Nevertheless, its estimates converge to the true
value quite rapidly. Concerning the estimation of the static
nonlinearity, the nonlinear map N (z) in (16) is finally
approximated by a PWA map f(z) with 5 modes and
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Fig. 3. Sequence of the estimates of the ARX coefficients
−a2, b1, b2 and g1 in the case ηe = 0.05 of Section 4.1
(dotted lines are true values).

maximum absolute error 0.0503 over the interval |z| ≤ 5.5
where measured data are available. The nonlinear map
N (z) and its PWA approximation f(z) are plotted in
Fig. 4 (top left) for |z| ≤ 2. Fig. 4 (top right) shows how
the bound δ of the bounded-error algorithm is selected at
each iteration to fit a suitable PWA map to the samples
(zt, v

j
t ). At the first iteration, the samples (zt, v

1
t ) are quite

scattered (bottom left in Fig. 4), and a large δ (namely,
δ = 1.5) is chosen to fit the points within the allowable
error δ while keeping the number of modes low. Note
that some samples fall outside the error bands: these are
points discarded as outliers by the PWA approximation
algorithm to obtain linearly separable clusters. As long
as the iterations proceed, the samples are less and less
scattered, and δ can be reduced. For instance, δ = 0.4 is
chosen at the fourth iteration (bottom right).

We stress that the original Lur’e system (13)-(14) is
not identifiable from input-output measurements only,

because there exist infinite pairs (L̃, Ñ ) giving origin to
the same input-output behaviors. Nevertheless, a model
of the system (13)-(14) can be recovered from the iden-
tified LFT model if additional prior knowledge about the
nonlinearity is assumed. For instance, if one knows that

the nonlinearity is a saturation, i.e. lim|z|→∞
∂Ñ (z)

∂z
= 0,

and thus, from (16), ã1 = − lim|z|→∞
∂N (z)

∂z
, the PWA

approximation f(z) of N (z) can be used to obtain an
estimate of ã1 as

ˆ̃
a1 = −

1

2

(
lim

z→−∞

∂f(z)

∂z
+ lim

z→+∞

∂f(z)

∂z

)
= −1.1911. (19)

Then, ã2 is estimated as ˆ̃a2 = â2 +
ˆ
ã1 b̂2

b̂1
= 0.8474. Both

estimates ˆ̃a1 and ˆ̃a2 are very close to their true values. A

PWA approximation f̃(z) of Ñ (z) is finally obtained as

f̃(z) = − 1

b̂1

(
f(z) + ˆ̃a1 z

)
. The nonlinear map Ñ (z) and

its 5-mode PWA approximation f̃(z) are plotted in Fig. 5.
The maximum absolute approximation error is 0.0438 over
the interval |z| ≤ 5.5.

For comparison purposes, a black-box PWARX model (12)
of the overall Lur’e system is identified by applying the
bounded-error identification algorithm [Bemporad et al.,
2005] to the same estimation data set. In order to guaran-
tee a fair comparison, the bound δ = 0.0870 is chosen equal
to the maximum absolute identification error of the iden-
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Fig. 4. (Top left) Nonlinear map N (z) (dash-dotted) and
its PWA approximation f(z) (solid) in the case ηe =
0.05 of Section 4.1. Vertical dashed lines represent
the z-domain partition of the PWA map. (Top right)
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t ) and PWA map fitted to these samples

for δ = 0.4 (solid). In the bottom figures, dashed lines
limit the error band ±δ around the PWA map.

tified LFT model (i.e. the maximum |εt| in (1) evaluated
on estimation data). Note that, since wt = f(yt−1) with
f(·) a 5-mode PWA map, the identified LFT model admits
an equivalent PWARX representation (12) with regression
vector rt = [ yt−1 yt−2 ut−1 ut−2 ]T and up to 52 = 25
modes, corresponding to all possible mode combinations
for the pair (wt, wt−1) in (17). In the considered data
set, there exist regression vectors rt in each of the 25
regions of such a PWARX model. However, 21 modes out
of 25 contain a number of points between 7 and 50 in
a 4-dimensional space, which makes us expect possible
difficulties in the classification step. Indeed, the procedure
fails in partitioning the whole data set into linearly sep-
arable clusters. A 6-mode PWARX model satisfying the
bound δ is obtained by discarding 124 data points, but
the corresponding maximum absolute identification error
computed on the whole data set is 0.2511. Note that,
in this data set where the signal-to-noise ratio is quite
large (

σy

σe
= 58.92) and the true system is not PWA,

the identification error is mainly due to the model error.
We thus argue that the PWARX identification procedure
experiences difficulties in the classification step due to a
deficient distribution of the data points in the zones of the
4-dimensional space where more points would be needed
to get the required accuracy. This problem does not show
up in the PWA approximation step of the proposed LFT
identification algorithm, as can be readily seen, e.g., in
Fig. 4 (bottom right).

The identified LFT and PWARX models are compared
using M = 1000 validation data sets composed by N =
1000 data points (ut, yt, zt) each. The validation data sets
are generated by feeding the Lur’e system with different
realizations of the input and noise signals. Simulated
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Fig. 5. Sigmoid map Ñ (z) (dash-dotted) and its PWA

approximation f̃(z) (solid) in the case ηe = 0.05 of
Section 4.1. Vertical dashed lines represent the z-
domain partition of the PWA map.

outputs ŷt are obtained by simulating the identified models
with inputs ut only. Also the Lur’e system is simulated
without noise, to serve as a reference for evaluating the
performance of the two identified models. Validation is
carried out by calculating the fit between the system
and the simulated outputs. Fig. 6 shows the histogram
obtained by grouping the M values of FIT for each
model into bins with centers {30, 40, 50, 60, 70}. The better
performance of the LFT model compared to the PWARX
model is apparent.

4.2 Dataset with ηe = 0.25

This data set is more challenging, because the signal-
to-noise ratio is

σy

σe
= 11.25. The iterative identification

procedure is initialized with values a0
2 = 0.5010, b0

1 =
0.9571 and b0

2 = 0.5368 obtained by fitting the ARX model
(18) to the data, while g0

1 is set equal to 0. By setting
γ = 0.001, the algorithm terminates after 9 iterations.

The final values â2 = 0.7357, b̂1 = 0.9915, b̂2 = −0.0982
and ĝ1 = −0.0884 provide very good estimates of the
corresponding true parameters. The nonlinear map N (z)
in (16) is approximated by a PWA map f(z) with 3 modes
and maximum absolute error 0.1460 over the interval
|z| ≤ 7.3 where measured data are available. Note that
the PWA approximation of N (z) is less accurate compared
to the previous identification experiment. This is due to
the higher noise level, which results into more scattered
samples (zt, v

j
t ), so that the bound δ cannot be reduced

below 0.4 in the PWA approximation step of the last
algorithm iterations (compare this value with the plot at
top right in Fig. 4).

A black-box PWARX model (12) of the overall Lur’e
system is also identified by applying the bounded-error
identification algorithm to the same estimation data set.
The bound δ = 0.3777 is taken equal to the maximum
absolute identification error of the identified LFT model.
In this case, the identified LFT model admits an equivalent
PWARX representation with 32 = 9 modes, but the
bounded-error procedure is able to fit to the data a simpler
PWARX model with 3 modes.

The identified LFT and PWARX models of the Lur’e
system present the same worst-case error on estimation
data, so that no clear preference can be accorded to one
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Section 4.1 by grouping the M = 1000 values of FIT
for the LFT, PWARX and noiseless Lur’e models into
bins with centers {30, 40, 50, 60, 70}.

model or to the other based on this criterion. The number
of parameters is also similar: 10 for the LFT model, and
12 for the PWARX model. As for the previous data set,
the two models are further compared using M = 1000
validation data sets composed by N = 1000 data points
(ut, yt, zt) each. Fig. 7 shows the histogram obtained by
grouping the M values of FIT for each model into bins
with centers {30, 40, 50, 60, 70}. The performance of the
two models is similar, as confirmed by the median of
the corresponding distributions, being 47.9141% for the
LFT model, and 46.6157% for the PWARX model. We
may argue that, in this case, the structure information
contained in the data is somehow hidden by the high noise
level, so that exploiting the system structure does not
lead to significant improvements as in the identification
experiment with ηe = 0.05.

5. CONCLUSIONS AND FUTURE RESEARCH

In this paper an iterative algorithm for PWA identification
of complex systems composed by interconnected linear
and nonlinear systems has been presented. The proposed
approach provides explicit models for both the linear and
the nonlinear part of the system. Numerical examples have
shown that the LFT models provided by the proposed
structure-exploiting algorithm are typically more accurate
than the PWARX models obtained from black-box identi-
fication of the whole system. This is particularly evident
when the noise level is not sufficient to mask the informa-
tion about the inner interconnection structure contained
in the data.

Several open problems are worth to be addressed in the
considered identification framework. Identifiability issues
related to LFT structures with PWA nonlinearities need
to be investigated. Moreover, the proposed identification
algorithm should be extended to the case of MIMO sys-
tems and multi-output nonlinearities.

REFERENCES

A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino. A
bounded-error approach to piecewise affine system iden-
tification. IEEE Transactions on Automatic Control, 50
(10):1567–1580, 2005.

30 40 50 60 70
0

5

10

15

20

25

FIT

fr
eq

ue
nc

y 
(%

)

LFT
PWARX
Lur’e

Fig. 7. Histogram obtained in the case ηe = 0.25 of
Section 4.2 by grouping the M = 1000 values of FIT
for the LFT, PWARX and noiseless Lur’e models into
bins with centers {30, 40, 50, 60, 70}.

L. Breiman. Hinging hyperplanes for regression, classifica-
tion, and function approximation. IEEE Transactions
on Information Theory, 39(3):999–1013, 1993.

M. S. Claassen. System identification for structured non-
linear systems. PhD thesis, Department of Mechanical
Engineering, University of California at Berkeley, USA,
2001.

K. Hsu, M. Claassen, C. Novara, P. Khargonekar, M. Mi-
lanese, and K. Poola. Nonparametric identification of
static nonlinearities in a general interconnected system.
In Proc. 16th IFAC World Congress, Prague, Czech
Republic, 2005a.

K. Hsu, T. Vincent, C. Novara, M. Milanese, and K. Poola.
Identification of nonlinear maps in interconnected sys-
tems. In Proc. 44th IEEE Conference on Decision and
Control and European Control Conference 2005, pages
6430–6435, Seville, Spain, 2005b.

K. Hsu, T. Vincent, and K. Poola. A kernel-based
approach to structured nonlinear system identification
Part I: Algorithms. In Proc. 14th IFAC Symposium
on System Identification, pages 1198–1203, Newcastle,
Australia, 2006.

J.-N. Lin and R. Unbehauen. Canonical piecewise-linear
approximations. IEEE Transactions on Circuits and
Systems – I: Fundamental Theory and Applications, 39
(8):697–699, 1992.

K. S. Narendra and P. G. Gallman. An iterative method
for the identification of nonlinear systems using a Ham-
merstein model. IEEE Transaction on Automatic Con-
trol, 11(3):546–550, 1966.

S. Paoletti, A. Lj. Juloski, G. Ferrari-Trecate, and R. Vi-
dal. Identification of hybrid systems: A tutorial. Euro-
pean Journal of Control, 13(2-3):242–260, 2007.

E. Pepona, S. Paoletti, A. Garulli, and P. Date. An
iterative procedure for piecewise affine identification of
nonlinear interconnected systems. In Proc. of 46th IEEE
Conference on Decision and Control, pages 5098–5103,
New Orleans, USA, 2007.

F. Previdi and M. Lovera. Identification of a class of
non-linear parametrically varying models. International
Journal of Adaptive Control and Signal Processing, 17
(1):33–50, 2003.

J. Roll. Local and piecewise affine approaches to system
identification. PhD thesis, Department of Electrical
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