A trace formula for Toeplitz operators was proved by Boutet de Monvel and
Guillemin in the setting of general Toeplitz structures. Here we give a local
version of this result for a class of Toeplitz operators related to continuous
groups of symmetries on quantizable compact symplectic manifolds. The local
trace formula involves certain scaling asymptotics along the clean fixed locus
of the Hamiltonian flow of the symbol, reminiscent of the scaling asymptotics
of the equivariant components of the Szeg\"o kernel along the diagonal