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This article aims to elucidate the application of feedback linearisation in systems 

having non-smooth nonlinearities. With the aid of analytical expressions originating 

from classical feedback linearisation theory, it is demonstrated that for a subset of non-

smooth systems ubiquitous in the structural dynamics and vibrations community, the 

theory holds soundly. Numerical simulations on a three degree of freedom 

aeroservoelastic system are carried out to illustrate the application of feedback 

linearisation for a specific control objective, in the presence of dead-zone and piece-wise 

linear structural nonlinearities in the plant. An in-depth study of the arising zero-

dynamics, based on a combination of analytical formulations and numerical simulations, 

reveals that asymptotically stable equilibria exist, paving the way for the application of 

feedback linearisation. The latter is demonstrated successfully through pole-placement 

on the linearised system. 
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/  = positive/negative definite 

 ker  = kernel/null-space function 
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 K  = Filippov’s differential inclusion 

,   = aerofoil pitch deflection, pitch velocity 

,   = aileron flap deflection, flap velocity 

com  = commanded flap deflection 

, ,      = pitch / flap / plunge mode damping ratio 

  = freeplay / piece-wise linear stiffness parameter 

  = 

ratio of mass of aerofoil section and other rotating parts to the mass of a cylinder of air 

with diameter 2b 

,   = aerofoil plunge displacement, plunge velocity 

, ,      = uncoupled pitch / flap / plunge mode natural frequency 

a  = distance from aerofoil mid-chord to rotational axis, normalised by b 

b  = aerofoil semi-chord 

c  = distance from aerofoil mid-chord to aileron hinge line, normalised by b 

,A B  = state and input matrices of linearised system 

,A b  = matrices pertaining to zero-dynamics 

C  = system damping matrix 

tC  = total aeroelastic damping matrix (structural + aerodynamic) 

1 2, , , pD E E F  = matrices relating to augmented states of aeroelastic model 

2e  = 2
nd

 column of a 3×3 identity matrix 

nlf  = nonlinear force vector 

   ,f x g x  = functions of the state vector in the nonlinear state-space form  

g  = the freeplay/piece-wise linear “gap” on either side of the origin 

g  = 2ge  

G  = input selection matrix in nonlinear system 

K  = pitch structural stiffness 



K  = system stiffness matrix 

tK  = total aeroelastic stiffness matrix (structural + aerodynamic) 

M  = system inertia matrix 

tM  = total aeroelastic inertia matrix (structural + aerodynamic) 

p  = 1
st
 column of a 6×6 identity matrix 

P  = Lyapunov matrix used in zero-dynamics stability assessment 

, ,q q q  = vectors of aerofoil displacements, velocities and accelerations  

aq  = vector of augmented states of aeroelastic system 

,r r   = radius of gyration of aerofoil / aileron, normalised with respect to b 

T  = transformation between co-ordinates of nonlinear and linear system 

plT  = transformation between co-ordinates of nonlinear and partially linearised system 

1 13, ,T T  = Theodorsen functions (Appendix A1) 

,u u  = actual and artificial inputs in closed-loop system 

,u u  = vectors of actual and artificial inputs in closed-loop system 

*U  = reduced air speed 

x  = centre-of-mass distance of wing+aileron from rotational axis, normalised by b 

x  = centre-of-mass distance of aileron from hinge line, normalised by b 

1 8, ,x x  = structural states of aeroelastic system 

1 2
,a ax x  = augmented states in aeroelastic system 

,x x  = state and rate vectors of original nonlinear system 

y  = outputs chosen for input-output feedback linearisation 

,z z  = state and rate vectors of linear system 

,z z  = state vector of zero-dynamics 

eqz  = equilibrium point of zero-dynamics 

ˆ ˆ,z z  
= state and rate vectors of zero-dynamics with origin shifted with respect to a given 

equilibrium point 



 Tb P
Z  = null-space matrix of 

T
b P  

 

I. Introduction 

EEDBACK linearisation is a nonlinear control method that has found application in several engineering 

disciplines, including robotics [1] (computed torque control), chemical engineering [2] and, as will shortly be 

discussed in more detail, aerospace engineering. Well-known texts such as [3-5] present the method in detail. A 

requirement for the applicability of feedback linearisation is smoothness of the nonlinear system. With such 

systems, the mathematics of the procedure is straightforward and an abundance of literature presenting 

application of the method is widely available. For instance, a series of numerical simulations and experiments 

was undertaken in [6-12] where feedback linearisation was applied in nonlinear aeroelastic systems with smooth 

structural nonlinearities. 

Non-smooth systems, on the other hand, have received much less attention where feedback linearisation is 

concerned. Recker et al. [13], designed an adaptive controller utilising feedback linearisation for systems with a 

deadzone. The non-smooth nonlinearity, however, was confined to the input and was not part of the state (the 

open-loop system was smooth). An extension to this work by Ma and Tao [14] generalised the method for cases 

of full and partial linearisation with or without relative degree. Sun and Ge [15] formulated a criterion for non-

smooth non-regular feedback linearisability, where the inputs were allowed to be non-smooth. Hatipoğlu and 

Özgüner [16, 17] employed feedback linearisation as an intermediate stage in the control of non-smooth 

systems, and illustrated the control algorithm through a numerical example featuring a single degree of freedom 

plant. However, an explanation justifying the use of discontinuous linearising feedback was not provided. Other 

work relating to control of non-smooth systems is available in more abundance, and includes adaptive control of 

systems with both input and output nonlinearities as investigated by Tao [18] and Tao and Kokotovic [19] and 

the work of Lin and Qian [20] on adaptive control of systems having unstable linearisation. In [18, 19] the plant 

considered was linear, and the controller utilised the adaptive inverse as in Recker et al. The open-loop system 

in [20] was nonlinear and smooth. An adaptive control approach which does not require computation of the 

dead-zone inverse is presented by Ma and Yang [21]. Zhou and Wen [22] address backstepping and adaptive 

control of uncertain systems with a variety of non-smooth nonlinearities; a collection of more than 170 related 

references is provided in their book. 

F 



This article is motivated by the need to expound the application of feedback linearisation in systems having 

non-smooth nonlinearities as part of the plant. The main contributions of this paper are:  

(a) the admission of a non-smooth structural nonlinearity associated with the state of the plant that will be 

subjected to feedback linearisation, 

(b) analysis of theoretical expressions arising from classical feedback linearisation theory to aid understanding 

of non-smooth feedback linearisation in this context. 

Numerical examples are provided to elucidate all ideas developed. Although the present article places an 

emphasis on aeroelastic systems in terms of the cited literature and numerical illustrations used, the main 

principles that will be developed are intended for the general case. 

II. Feedback Linearisation 

Feedback linearisation is a process whereby a nonlinear system is rendered linear through the application of 

nonlinear feedback and a co-ordinate transformation [3, 4]. Input-state linearisation results in all states of the 

nonlinear system being linearised, whereas input-output linearisation seeks to linearise the input-output map only. 

Both forms may be carried out in single-input-single-output (SISO) or multi-input-multi-output (MIMO) 

configurations. The present article focuses on input-output linearisation of control-affine nonlinear systems, often 

expressed as 

 

          , , ,u u u     x f x g x x x z T x  (1) 

 

where ,u u  and T  are the nonlinear feedback, artificial input corresponding to the linearised system and 

co-ordinate transformation respectively. In the general case, the terms ,f g  in eq. (1) are required to be smooth; 

the smoothness of f  translates to continuous differentiability of the transformation  T x . The latter is a 

required condition for the applicability of feedback linearisation, in the general case of eq. (1). However, it will 

be shown in this paper that for a subset of all systems described by this equation the smoothness condition on f  

may be relaxed, allowing application of feedback linearisation in a configuration that will be of great utility in a 

practical context. 

A. Second-order nonlinear dynamical systems with displacement outputs 

In this article, second-order nonlinear dynamical systems of the form 



 

  ,nl   Mq Cq Kq f q q Gu  (2) 

 

are addressed. This forms a subset of eq. (1), which covers a broad range of elasto-mechanical and 

aeroelastic vibrations problems encountered in engineering applications. The state-space form of eq. (2) has the 

structure 
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Comparing the above equation with eq. (1), it is seen that the function g  is now constant. Notice that the 

nature of the nonlinearity as expressed by the term nlf , which may depend on any of the system’s states 

(including displacements and/or velocities), will govern the smoothness properties of f  in eq. (1). Input-output 

feedback linearisation may be carried out by choosing as the output any entry in q  (i.e. any displacement co-

ordinate) or a linear combination of its entries.  

1 Complete input-output linearisation 

The case where the number of inputs and outputs is equal to the number of system degrees of freedom, n, is 

now considered. For simplicity, here one assumes that the number of states in the system is equal to twice the 

number of degrees of freedom (as in eq. (3)), although this assumption can be relaxed as illustrated in section 

III. Choosing as the output the entire vector of displacements, i.e. y q  and implementing input-output 

linearisation with each output in turn from 1:j n , 
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the 2 2n n  transformation T , linear dynamics and nonlinear input may be obtained respectively as 
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It is evident that complete MIMO input-output linearisation has resulted in all states of the system being 

linearised. The transformation T  is linear, full-rank and independent of the state variables. Furthermore, note 

that the linear system consists of n decoupled subsystems of dimension 2, each involving the displacement and 

velocity pertaining to a given degree of freedom. 

2 Partial input-output linearisation 

The case where the equal number of inputs and outputs m  is less than the number of system degrees of 

freedom n  is now considered. Applying input-output linearisation as before for m  displacement outputs results 

in the same set of equations as in eq. (4) above, where now 1:j m . This results in only a partial linearisation 

of the original nonlinear system, viz.,  1:2 plm
z T x . The partially linearised system will comprise 2m  states, 

leaving a remainder of  2 n m  states unobservable from the outputs. The procedure for investigating 

stability of this so-called internal dynamics is to examine the zero-dynamics of the system [3, 4], which requires 

expressions for the remaining co-ordinates  2 1:2m n
z . These may be chosen arbitrarily provided that the overall 

transformation T  is non-singular and the dynamics associated with the additional co-ordinates are orthogonal to 

g . The latter condition ensures that the internal dynamics are obtained in the normal form, where the system 

inputs do not appear. The conditions mentioned here are satisfied by a T  having the following structure: 
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The dimensions of each block are given in the curly brackets, and ker denotes the kernel (null-space) 

function. It can be verified from the above structure that the linear transformation T  is non-singular and 

independent of the state variables, and therefore satisfies the conditions of a diffeomorphism, namely that the 

transformation is continuously differentiable and has a continuously differentiable inverse [4]. 

B. Feedback Linearisation - Non-smooth Nonlinearities 

The case where the nonlinear forcing term nlf  is non-smooth is now considered. A special feature evident in 

eq. (3) is that the velocity terms q  do not involve nlf  and are therefore not explicitly dependent upon non-

smooth terms. This special feature contributes to the co-ordinate transformation between linear and nonlinear 

co-ordinates being constant and non-singular as shown in section II.A.1 and section II.A.2 above. Thus, the 

nature of the transformation is unaffected by whether the nonlinearity is smooth or not. In conclusion, one can 

obtain a valid transformation T  that is a diffeomorphism when the nonlinearity is non-smooth or even 

discontinuous. The behaviour described here is not necessarily true in the general case (e.g. see Appendix A2). 

The nature of the dynamics of the linear system resulting from the application of feedback linearisation is 

now considered. The displacements and velocities of the system are obtained as time-integrals of the velocities 

and accelerations respectively. Thus, if the non-smooth nonlinearity is continuous, all state variables of the 

resulting linear system will be smooth, whereas if it is discontinuous, the desired linear system will have smooth 

displacements and non-smooth but continuous velocities. A direct consequence of this is that the desired linear 

system resulting from feedback linearisation will take on the nature of the non-smooth nonlinearity. In the case 

of complete input-output linearisation, this situation is avoided, as the input is designed to cancel all open-loop 

dynamics as expressed in eq. (4). However, this is indeed applicable to the partial input-output linearisation 



case, where the internal dynamics will be governed by the nonlinearity which is not completely eliminated. 

Thus, if the nonlinearity is non-smooth or discontinuous, one would expect the overall dynamics of the closed-

loop system to exhibit some non-smoothness or discontinuity respectively, until the stable internal dynamics 

have decayed.  

III. Numerical model - System Dynamics and Feedback Linearisation 

In this work, an aeroservoelastic state-space model with a non-smooth structural nonlinearity – namely 

piece-wise linearity – has been employed for illustrative purposes. In addition to a general case of piece-wise 

linearity, the special case of freeplay is also addressed. Numerical simulations aim to demonstrate the ideas 

established in the preceding section. The state-space form of the model is now presented, with detailed 

expressions for all system matrices given in Appendix A1. 

A. Linear state-space model of aeroservoelastic system 

The base model used is that developed by Edwards et al. [23], featuring an approximation of the general 

unsteady Theodorsen aerodynamics [24] through the use of augmented aerodynamic states. This model 

comprises a total of 8 states in the first-order state-space representation. Six of these are structural states, namely 

normalised plunge, pitch, aileron flap ( , ,    respectively) and their time-derivatives ( , ,    respectively). 

The normalisation of plunge is with respect to the semi-chord b. The remaining two states are the augmented 

aerodynamic states mentioned above (
1 2
,a ax x ). Equations of motion for the model are given as 
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The input in the above equation is the desired flap angle of the aileron.  



Fig. 1 depicts the displacement co-ordinates and also various aeroelastic parameters that will be introduced 

later. 

 

 

 
 

Fig. 1 Schematic of aeroelastic model showing displacements and parameters 

 

This particular model is appropriate for demonstration of the present objective as it models the dynamics of the 

actuator, the means through which the input will be applied. This is important because of the non-smooth inputs 

that are required, and takes into account the fact that it is never possible in the real world to implement non-smooth 

motions. 

B. Nonlinear model 

A nonlinear term is now introduced into the pitch degree of freedom of the model in eq (7). The resulting 

system may be expressed as 
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In the present case   g x B  and the use of different symbols is aimed at maintaining conventionally accepted 

notation in the linear and affine nonlinear cases. Note that the system has the special structure mentioned in section 

II.B earlier, notwithstanding the additional augmented states in this model. It is now necessary to express the pitch 



non-smooth nonlinearity through the nonlinear force vector nlf . A possible choice of the underlying linear system is 

one whose pitch stiffness is equal to the slope of the outer regions in the freeplay/piece-wise linear cases. In this 

case, the nonlinear force vector may be expressed as 
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where , ,g K   are the parameters describing the non-smooth nonlinearity, defined in Table 1. Setting 

1   produces the freeplay case, whereas any other value subject to the constraint 1   produces a piece-

wise linear nonlinearity. An example of the pitch moment profile for pitch freeplay and piecewise linear pitch 

stiffness is depicted by the solid line in Fig. 2. 

Table 1 Nonlinearity parameters for the non-smooth pitch 

stiffness 

Parameter Description 
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chosen as the pitch stiffness K   

of the desired linear system 

 

 

 

Fig. 2 Pitch moment profile in  

the presence of pitch piece-wise linear  

stiffness/pitch freeplay 
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The non-smooth nature of the freeplay/piece-wise linear nonlinearity would result in non-smooth but 

continuous forces and accelerations. However, the resulting changes in all states of the system will be C
1
 smooth 

(i.e. continuously differentiable, having continuous but non-smooth derivatives), as they are obtained as time-

integrals of the accelerations. 

C. Input-output linearisation 

The classical input-output linearisation approach introduced earlier is now followed to apply feedback 

linearisation by controlling the plunge displacement. The co-ordinates of the linear system become 

 

 1 1 2 1 4,z y x z y x x      (10) 

 

from eq. (7). Here, the output y  is chosen as the plunge displacement 1x  . The partially linearised 

system may then be obtained as 

 

  
 

 
1 1

1 1 2 34

2 2

0 1 0

, , ,

0 0 1

T

z z

u u u

z z

   

      
                
            

f x Π  (11) 

 

with u  being an artificial input associated with the linearised system. An appropriate choice for u  can be made 

depending on the control requirement. In the present work it is desired to apply pole-placement and thereby prescribe 

a new natural frequency n  and damping ratio n  of a chosen decoupled subsystem, which can be achieved by 

setting 
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Since there remains an un-linearised set of six states, it is necessary to examine the zero-dynamics to ensure their 

stability when designing a controller. Expressions for the remaining linear co-ordinates are first required to complete 

the transformation. These are chosen as 
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completing the full 8×8 transformation from nonlinear to linear co-ordinates as .z Tx  This particular 

choice ensures that the input terms do not appear in the internal dynamics, as is desirable. The resulting zero-

dynamics are found as 
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and where the matrix A  is given in eq. (7). Thus, one is able to investigate the stability of the zero-

dynamics for a given set of system parameters from (14). Such an investigation is undertaken in the numerical 

simulation.  

IV. Numerical Simulations 

In this section, results from numerical simulation of the aeroservoelastic system described in section III.A 

will be presented. Initially, appropriate values for the parameters of a linear system will be set, after which the 

symmetric freeplay/piece-wise linear nonlinearity described in section III.B will be incorporated. The final part 

of this section will then demonstrate the application of feedback linearisation for the pole-placement control 

objective outlined in section III.C. 

A. Parameters of aeroservoelastic system 

The parameter values presented in Table 2 are representative of a real 2 degree of freedom linear 

aeroservoelastic wind-tunnel model being used at the University of Liverpool. Most values were obtained during 

experiments conducted by Papatheou et al. [25]. The values for , r   were chosen to have appropriate 

magnitudes relative to the remaining parameters. 

 



Table 2 Parameters of the linear aeroservoelastic system 

 

Parameter Value Parameter Value Parameter Value 

  (rad/s) 35.354 c  0.5428   (rad/s) 100 

r  0.4 b  (m) 0.175 r  
0.07905

7 

x  0.09   69.0 x  0.0125 

  (rad/s) 22.948   0.002   0.002 

a  
-

0.33333 
  0.015   

 

It is found that the linear flutter speed of this system is *U   2.793. A plot showing the frequency domain 

behaviour with varying airspeed may be found in [26]. 

B. Time-domain response of uncontrolled nonlinear system 

The nonlinear model described in section III.B is now simulated, for the cases of (a) freeplay and (b) piece-

wise linear stiffness. In both cases, the gap of the initial regime is set to 1g   .  In the piece-wise linear case   

is set to 0.6. The parameters of the target linear system are set to the values given in Table 2; thus, the slope of the 

outer regions will be 2 2K r   . The reduced air speed is chosen as * 2.0U  . Initial values for plunge and pitch 

are arbitrarily set to 0.01, 3    respectively, and zero for all other states. No prescribed or external 

excitation is introduced to the system. The resulting structural responses are shown in Fig. 3. 
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(b) piece-wise linear stiffness 

 

Fig. 3 Structural states of nonlinear system at U*=2.0 

 

It is evident that the response settles into a limit cycle oscillation in both cases, which occurs at an airspeed that 

is less than the LFS *U   2.793. An important step in numerically simulating the piece-wise linear system is 

locating accurately the switching points between the different regimes of the nonlinearity. An adaptation of 

Henon’s method [27] was used in [28] to achieve this task, and has been employed in the present work for the 

same purpose. 

C. Stability of the zero-dynamics 

The zero-dynamics expressed in eq. (14) in section III.C are now analysed for both (a) freeplay and (b) piece-

wise linear stiffness. An analytical formulation for studying stability based on Lyapunov theory is provided in 

Appendix A3. The analysis starts by expressing the zero-dynamics (14) compactly as 

 

    3 , .z t  z Az b f z  (15) 

 

The numerical value of the Hurwitz matrix A  and the vector b  (different for freeplay and piece-wise linear 

cases) in the present example are given in Appendix A4. It can be shown that the equilibrium points of the zero-

dynamics can obtained by solving 
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(see Appendix A3). The stability of the equilibrium points was studied using the aforementioned Lyapunov 

theory. To solve the LMIs arising in the associated numerical computations, the Yalmip [29] and Sedumi [30] 

Matlab toolboxes  were employed. 

 

Freeplay case: 

 

In the case of the trivial equilibrium, it was not possible to find an arbitrary matrix 0P  (such that 

1
2

0TV  z Pz ) that results in   0TP A bp  (such that 0V  ), as required by Lyapunov theory ( ,  

denote positive/negative definiteness respectively). However, it was possible to find a suitable matrix P  in the 

case of the non-trivial equilibria (see Appendix A4 for numerical value). Fig. 4 shows a collection of simulated 

time-domain responses of the zero-dynamics, each with a randomly generated initial condition (the figures show 

the response as they approach steady-state, after the initial transients have largely decayed). 

 

 

 

Fig. 4 Zero-dynamics for freeplay case, as steady-state is reached  

(several simulation results plotted together) 

 

Note that none of the responses converge to the origin. This is a reflection of the fact that it is not possible to 
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particular equilibrium point is unstable. This happens to agree with intuition, as one would not expect a settled state 
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within a region of zero pitch stiffness ( 3z g ). It can be seen that in all cases the responses settle to one of the 

two non-zero equilibria. This is directly related to the fact that one is able to satisfy the 0PA  condition 

simultaneously with 0P , indicating asymptotic stability of these equilibria. 

It is of interest to gain some understanding of the basin of attraction of the non-trivial equilibria. One reason as 

to why this may be useful is to shed light on the possibility of a response establishing a pseudo-stable trajectory 

about the origin, such as a limit cycle oscillation. Analytical and numerical studies were carried out (see Appendix 

A3), and results showed that any solution within 3z g  will lie within the basin of attraction of both non-zero 

equilibria. Thus, it has to be the case that such solutions will be attracted by one non-zero equilibrium or the other, 

precluding the possibility of a pseudo-stable oscillation. 

 

Piece-wise linear case: 

 

The equilibrium points in this case may be computed as previously using eq. (16). It transpires that the 

solutions to the second and third equations are not feasible, as they violate the 3z g  and 3z g   conditions 

respectively. Thus, in the piece-wise linear case, one is left with a single equilibrium point, obtained by solving the 

first equation in eq. (16). In doing so, the resulting matrix  TA bp  turns out to be full-rank, resulting in the 

solution being the trivial equilibrium eq z 0 . Using Lyapunov theory, the problem now reduces to finding a 

0P  that results in  TP A bp   being negative definite. Such a P  was successfully found (whereas in the 

freeplay case this was not possible), thus proving the asymptotic stability of the trivial equilibrium (numerical 

value of P  is provided in Appendix A4). This conclusion is supported by the results from numerical simulations 

presented in Fig. 5, which shows several simulation results plotted together, each simulated with a different 

initial condition generated randomly. The convergence of the zero-dynamics to the origin is clearly visible. 

 



 

 

Fig. 5 Zero-dynamics for piece-wise linear case, as steady-state is reached  

(several simulation results plotted together) 

 

D. Time-domain response of closed-loop system with feedback linearisation 

The existence of asymptotic stable equilibria of the zero-dynamics has been shown in the preceding section. 

Thus, it is now possible to proceed with the application of the chosen feedback linearising control. Plunge-

output feedback linearisation with pole-placement, as described in section III.C is now carried out in both the 

freeplay and piecewise linear stiffness cases. The target natural frequency and damping ratio are chosen as 

1Hz, 0.1n n 
   , respectively. The resulting closed-loop response, for the same initial conditions as the open-

loop case, is shown in Fig. 6. 
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(b) piece-wise linear stiffness 

 

Fig. 6 Closed-loop response of system at U*=2.0 

 

It is evident from the first subplots in both (a) and (b) that the target natural frequency of 1 Hz is achieved in the 

plunge motion, as expected. The pitch motion in (a), confined to the internal dynamics settles down to a non-zero 

stable equilibrium close to the lower bound of the freeplay gap ±1˚ (indicated by the dashed horizontal lines), as seen 

in the middle plot (this result is expected, in view of the nature of the zero-dynamics equilibrium points studied 

earlier). The pitch motion may settle down to either the upper or lower freeplay bound depending on the initial 

condition. In the piece-wise linear case (b), the pitch motion and also other responses converge to zero, as expected 

from the nature of the zero-dynamics. The actual flap motion is given in the final subplot in both cases. This is 

compared against the commanded input in Fig. 7, where the difference between the two is clearer. 
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Fig. 7 Comparing commanded and actual flap angles U*=2.0 
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what the actuator is physically capable of achieving, and therefore its non-smooth nature will not degrade feedback 

linearisation that is based on a nonlinear control law derived from the model. Thus, exact pole placement will be 

achieved in the absence of nonlinearity parameter errors. 

A similar approach was followed with the pitch displacement chosen as the output. In this case, it transpired 

that the zero-dynamics were unstable for both freeplay and piece-wise linear stiffness, indicating that this 

configuration of input-output linearisation is not feasible. 

V. Conclusion 

In this article, the authors have demonstrated the application of feedback linearisation in systems having a 

non-smooth structural nonlinearity that is part of the state. A careful examination of the underlying theory shows 

that a relaxation of the smoothness conditions required in feedback linearisation in the general case is possible 

for the class of second-order dynamical systems considered due to its special structure in the state-space 

representation; this in turn permits the use of feedback linearisation when the plant is beset by a non-smooth or 

even discontinuous nonlinearity. An in-depth analysis of the stability of the zero-dynamics arising from plunge-

output linearisation has been carried out, where the feasibility of feedback linearisation has been demonstrated. 

A description of the expected linearised dynamics has been provided, where it is pointed out that in partial 

feedback linearisation the system may suffer non-smooth dynamics if the nonlinearity is discontinuous. It is 

hoped that the clarity shed by this work on the issue of non-smooth feedback linearisation encourages further 

research that combines feedback linearisation methods with non-smooth nonlinear systems. 

Appendices 

A1 System matrices for aeroelastic model 

The approximated 8-state unsteady aeroelastic model developed by Edwards et al. has been employed in this 

work. The matrices in the state-space model and related expressions are given in this section for the convenience 

of the reader, but may also be found in [23], [31]. 

 

The structural and aerodynamic inertia matrices respectively are given by 
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the structural and aerodynamic damping matrices respectively by 
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and the structural and aerodynamic stiffness matrices respectively by 
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The state-space form of the system (in the absence of any nonlinearities), including the two additional 

aerodynamic states is then obtained using eq. (7). The quantities appearing in this equation are: 
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The various “T” functions defined by Theodorsen [24] appearing in this section are also given here for the 

convenience of the reader. 
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A2 Input-output linearisation in a general nonlinear system 

Consider the following nonlinear system without the special structure discussed in section II.A earlier.  
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where  2nlf x  is a non-smooth nonlinearity, the computation of the co-ordinate transformation results in 
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and it is evident that differentiation of the non-smooth term is required in obtaining the linear dynamics, and 

therefore the transformation  z T x  is not continuously differentiable. Thus, this configuration of input-

output feedback linearisation is not feasible. 

A3 Stability of the plunge zero-dynamics 

The nonlinear force vector in eq. (9) may be expressed as a function of 3z , concisely, as 
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Combining this representation of nlf  with eq. (14), and denoting  3:8
ZD

z z , the zero-dynamics may be 

expressed in the form 
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The equilibrium points of the system are found from 
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so in each of the 3 conditions, 
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Using the substitution  
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the first line of (A3-4) may be simplified, 
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For non-singular A  and  TA bp , the solutions are found as 

 

 

3

1
3

1
3

,

,

.,

eq

z g

z gg

z gg














 

 

  



0

A b
z

A b

 (A3-7) 

 

Since the zero-dynamics being analysed are non-smooth, it may be inadequate to apply smooth stability 

theory in a piece-wise manner. A general Lyapunov approach for analysing the stability of non-smooth systems 



is given in [32], and will be employed for the present task. If the equilibrium point of interest were simply 

eq z 0 , one can choose as a Lyapunov function 

 

 1
2

, 0, ,T TV  z Pz P P P  (A3-8) 

 

where P  is arbitrary, and  denotes positive-definiteness. However, since one also has two non-zero 

equilibria in addition to the trivial equilibrium, the origin should be redefined such that the Lyapunov function is 

based around a given equilibrium point, viz., 

 

 

1
2

ˆ

ˆ ˆ , 0, .

eq

T TV

 

 

z z z

z Pz P P P

 (A3-9) 

 

The dynamics in the new variable would be 

 

      ˆ ˆ ˆ, , : , ,eq eqt t t      z z z z f z f z z g z  (A3-10) 

    3
ˆ ˆ, .eqt z  g z Az Az b  (A3-11) 

 

Note that the Lyapunov function in (A3-9) is smooth (the only exception to this is when the nonlinearity is 

discontinuous, in which case the velocity would be non-smooth but continuous, causing the Lyapunov function 

to be non-smooth. This scenario will not be considered in the present paper). The stability theory in [32] is used 

to express the derivative of the Lyapunov function as  

 

  ˆ, ,T

V

V K t





   g z  (A3-12) 

 

where V  is Clarke’s generalised gradient and K[ ] denotes the Filippov differential inclusion. Since V is 

smooth, 

 



 ˆ, ,
ˆ

V
V V V


     


Pz

z
 (A3-13) 

 

leading to 

 

  ˆ, .TV V K t    g z  (A3-14) 

 

Utilising Theorems 1 – 5 and 7 in [33],  ˆ,K t 
 g z  is computed as 

 

      3 3
ˆ ˆ ˆ, eq eqK t K z K z              g z Az Az b Az Az b  (A3-15) 

 

since ˆAz  and b  are continuous and eqz  is constant for a given equilibrium point. Substituting from 

(A3-13), (A3-15) into (A3-14), 

 

 

  

 

3

33

3

3

3

ˆ ˆ

,

,

, .

T
eqV K z

z gz

g z g
K z

g z g



 

 





     




 

   

  



z P Az Az b

 (A3-16) 

 

For the three conditions, with substitutions made from (A3-5) and (A3-9), this may be expressed as 

 



 

  

 

 

3

3

3

ˆ ˆ ,

ˆ ˆ ,

ˆ ˆ , .

T T
eq

T
eq

T
eq

z g

g z g
V

g z g



 

 

   




  
 



   



z P A bp z z

z P Az Az b

z P Az Az b

 (A3-17) 

 

From Lyapunov theory, one requires the derivatives in eq. (A3-17) to be strictly negative for asymptotic 

stability. These expressions need to be analysed with respect to each of the three equilibrium points in eq. 

(A3-7) to determine the stability of the system in each of the three regions of 3z ; thus, a total of nine 

expressions arise. After some simplification, these can be shown to be: 

 

Equilibrium point eq z 0  

 

 

  3

3

3

ˆ ˆ 0,( )

( ) ˆ ˆ ˆ 0

( ) ˆ ˆ ˆ 0 .

T T

T T

T T

z ga

b g z g

c g z g



 

 

  

  

   

z P A bp z

z PAz z Pb

z PAz z Pb

 (A3-18) 

 

Equilibrium point 
1

eq g
 z A b  

 

 

   1

3

3

3

ˆ ˆ ˆ 1 0,( )

( ) ˆ ˆ 0,

( ) .ˆ ˆ ˆ2 0,

T T T T

T

T T

g z ga

z gb

c z gg

 





    



  

z P A bp z z Pb p A b

z PAz

z PAz z Pb

 (A3-19) 

 

Equilibrium point 
1

eq g
z A b  

 



 

   1

3

3

3

ˆ ˆ ˆ 1 0,( )

( ) ˆ ˆ ˆ2 0,

( ) .ˆ ˆ 0,

T T T T

T T

T

g z ga

z gb g

c z g

 





    

 

 

z P A bp z z Pb p A b

z PAz z Pb

z PAz

 (A3-20) 

 

The task now is to verify whether the set of three inequalities pertaining to each equilibrium point can be 

satisfied. If a given inequality can be satisfied, that would signify that the respective equilibrium point can 

attract a general point located in the region pertaining to the inequality. As a starting point, one may consider the 

stability of each equilibrium point in its own region, namely by analysing equations (A3-18)a, (A3-19)b and 

(A3-20)c. For stability, it is required that   0TP A bp  in the first case and 0PA  in the remaining two 

cases (  denotes negative-definiteness). 

 

Now consider the equilibrium 
1

eq g
 z A b . Eq. (A3-19)a describes how this equilibrium attracts points in 

the centre region 3z g . Combining this with equations (A3-5) and (A3-9) and simplifying leads to 

 

  3 3
ˆ ˆ ˆ 0, .T T z g z g    z PAz z Pb  (A3-21) 

 

It should always be possible to satisfy the negative definiteness of the first term for Hurwitz A . Also, by 

definition  3z g  in the range 3z g  is either negative or zero. Therefore, a possible solution to the 

above equation is 

 

   3
ˆ , 0, .T z g   b P z  (A3-22) 

 

In this case, a general expression for ẑ  will be 

 

 
  3

ˆ ˆ , ,Tmn z g  
b P

z z Z w  (A3-23) 

 



where  

 

     
1

ˆ T
mn  


  
 

z Pb b P Pb m  (A3-24) 

 

is the minimum-norm solution to (A3-22), 
 Tb P

Z  is the null-space matrix of 
T

b P  and w  is an arbitrary 

vector. It is not clear at this stage whether subsequent values of ẑ  will continue to obey eq. (A3-23) and thus 

have guaranteed asymptotic stability. This is because in the present expression, one does not have the quadratic 

form usually associated with Lyapunov stability. Combining this solution with the zero-dynamics will shed light 

on this problem. 

 

Equations (A3-1), (A3-11), (A3-24), (A3-23), 
1

eq g
 z A b  are combined with the time-derivative of eq. 

(A3-23), and simplified to obtain the dynamics of the parameter vector w  for a fixed value of the bound  , 

viz., 

 

 
       

 

 

1

3

3

1

, .T T T

T

T T T

T

g

z g

c





  
 

       
   

 
 

b P b P b P

b p A b

w Z A bp Z w Z

A bp m

 (A3-25) 

 

One may conclude from the above equation that since any solution ẑ  is bound by the zero-dynamics, all 

parameter vectors w  must necessarily obey the trajectory defined by eq. (A3-25), which is stable provided the 

matrix 
     T T

T T
b P b P

Z A bp Z  is Hurwitz. This can be said of the various w  for all possible values  . This 

leads one to conclude that if a solution ẑ  satisfies (A3-23) at a given time, it will continue to do so for all future 

time. Using symmetry, a very similar approach can be used to draw conclusions regarding stability with respect to 

the other non-zero equilibrium. 

 



The above analysis has focused on studying the basin of attraction of 
1

eq g
 z A b  whilst remaining 

oblivious to the remaining non-zero equilibrium point, namely 
1

eq g
z A b . From a similar analysis to that 

above, it can be shown that the region 3z g  belongs also to the basin of attraction of this equilibrium point. 

In fact, further analytical expressions (coupled with numerical simulations) – omitted here for brevity – show that 

any solution satisfying (A3-19)a also satisfies (A3-20)a. This leads to the conclusion that instances of ẑ  satisfying 

3z g  may be attracted by either of the non-trivial equilibria. 

 

Note that the above analysis has provided a formula for a general point ẑ , which provides a sufficient 

condition for the point to be attracted by either of the non-zero equilibria. It is acknowledged that not all instances 

of ẑ  will necessarily conform to this solution form. The authors have gained ample confidence through 

comprehensive numerical tests that the general case of ẑ  will also always be within the basin of attraction of (at 

least one) of the non-zero equilibria, and therefore be attracted by one of them in all cases. 

A4 Numerical values of matrices 

The matrices , ,A b P  pertaining to the numerical simulation in section IV are 

 



 

 1 2 3 4 5 6

1 2

0 0

-1.052519802118332e+05 4.041090088153123e+04

5.399869146317270e+05 -4.298752404294511e+05

-1.659823663570565e+07 -1.7285681

0

7.070800000000000e+01

, where

,



 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

A a a a a a a

a a 3

-2.570282306800488e-03

4.272077768816730e+03

-4.545223216288383e+04

73261333e+06 -1.830205646000262e+05

0 0

4.134300537289159e+01 4.371383129559804e+00

,

   
   
   
   
   
   
   

   
  
  
  
  
  
  
  

a

4 5

7.060748738249028e-05 0

-1.171834173862442e+02 1.244850769997651e+05

1.246584721963058e+03 -1.132149605329264e+06

5.013723978938279e+03 1.66

0

-1.199639476900394e-01

,









 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

a a 6

0

2.787217464100848e+04

-2.534879865121954e+05

7116413208036e+06 3.732669082569129e+05

0 1.000000000000000e+00

-6.824483025360000e+01 -2.442961400000000e+01

,

   
   
  
  
  
  
  

   
  
  
  
  
  
  
  

a .














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Freeplay case: 

 

 

0

2.342301136732328e+05

-1.712999346432723e+06

1.832552450362287e+07

0

0

,

 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

b  (A4-2) 

 



 

 1 2 3 4 5 6

1 2

9.372607855313569e-01 8.740468264190

8.740468264190424e-02

9.234713203835910e-03

-2.538207346361724e-04

-4.870521398378206e-02

-2.158444391650875e-03

, where

,



 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

P p p p p p p

p p 3

424e-02 9.234713203835910e-03

1.836685287561729e-02 1.941132661625013e-03

1.941132661625013e-03 2.051524045

-5.324019202272837e-05

1.615430260018339e-02

3.820056422105477e-03

,

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

p

4

951996e-04

-5.626781131016655e-06

1.706849539147576e-03

4.036721215201463e-04

-2.538207346361724e-04

-5.324019202272837e-05

-5.626781131016655e-06

1.543320242320278e-07

-4.671

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p 5

-4.870521398378206e-02

1.615430260018339e-02

1.706849539147576e-03

-4.671170920817329e-05

170920817329e-05 3.164968847347670e-01

-1.103599334489257e-05 1.088581433922096e-02

,

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

p 6

-2.158444391650875e-03

3.820056422105477e-03

4.036721215201463e-04

-1.103599334489257e-05

1.088581433922096e-02

5.402751369202207e-03

, .

  
  
  
  
  
  
    

   
   
   
   
   
   
   
    

p
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Piece-wise linear case: 

 

 

0

1.405380682039397e+05

-1.027799607859634e+06

1.099531470217372e+07

0

0

,

 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

b  (A4-4) 

 



 

 1 2 3 4 5 6

1 2

5.056526725019898e-01 1.46261292099234

1.462612920992349e-01

1.545870907700230e-02

-4.241601950240046e-04

1.772732012964278e-01

4.624078483505167e-02

, where

,



 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

P p p p p p p

p p 3

9e-01 1.545870907700230e-02

9.720189272664394e-02 1.027518723239798e-02

1.027518723239798e-02 1.08619139719

-2.818129594597023e-04

2.032449173738622e-01

4.334432088729381e-02

,

 
 
 
 
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 

 
 
 
 
 
 
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 

p

4

4798e-03

-2.979037465256925e-05

2.147300258521749e-02

4.578753780004211e-03

-4.241601950240046e-04

-2.818129594597023e-04

-2.979037465256925e-05

8.170553983314395e-07

-5.88646

 
 
 
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 
 
 
 
 
 
 
 
 
 

p 5

1.772732012964278e-01

2.032449173738622e-01

2.147300258521749e-02

-5.886465972362083e-04

5972362083e-04 7.070018043909696e-01

-1.254781254657852e-04 1.341051528474015e-01

,

  
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 
 
 
 
 

  
 
 
 
 
 
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 

p 6

4.624078483505167e-02

4.334432088729381e-02

4.578753780004211e-03

-1.254781254657852e-04

1.341051528474015e-01

3.323272777784759e-02

, .

  
  

   
   
   
   
   

  
   
   
   
   
   
   
   

p

 (A4-5) 
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