In recent years, the near diagonal asymptotics of the equivariant components
of the Szeg\"{o} kernel of a positive line bundle on a compact symplectic
manifold have been studied extensively by many authors. As a natural
generalization of this theme, here we consider the local scaling asymptotics of
the Toeplitz quantization of a Hamiltonian symplectomorphism, and specifically
how they concentrate on the graph of the underlying classical map