629 research outputs found

    Detection Rates for Close Binaries Via Microlensing

    Get PDF
    Microlensing is one of the most promising methods of reconstructing the stellar mass function down to masses even below the hydrogen-burning limit. The fundamental limit to this technique is the presence of unresolved binaries, which can in principle significantly alter the inferred mass function. Here we quantify the fraction of binaries that can be detected using microlensing, considering specifically the mass ratio and separation of the binary. We find that almost all binary systems with separations greater than b0.4b \sim 0.4 of their combined Einstein ring radius are detectable assuming a detection threshold of 3%3\%. For two M dwarfs, this corresponds to a limiting separation of \gsim 1 \au. Since very few observed M dwarfs have companions at separations \lsim 1 \au, we conclude that close binaries will probably not corrupt the measurements of the mass function. We find that the detectability depends only weakly on the mass ratio. For those events for which individual masses can be determined, we find that binaries can be detected down to b0.2b \sim 0.2.Comment: 19 pages including 6 figures. Uses phyyzx format. Send requests for higher quality figures to [email protected]

    Is the Large Magellanic Cloud a Large Microlensing Cloud?

    Get PDF
    An expression is provided for the self-lensing optical depth of the thin LMC disk surrounded by a shroud of stars at larger scale heights. The formula is written in terms of the vertical velocity dispersion of the thin disk population. If tidal forcing causes 1-5 % of the disk mass to have a height larger than 6 kpc and 10-15 % to have a height above 3 kpc, then the self-lensing optical depth of the LMC is 0.71.9×1070.7 - 1.9 \times 10^{-7}, which is within the observational uncertainties. The shroud may be composed of bright stars provided they are not in stellar hydrodynamical equilibrium. Alternatively, the shroud may be built from low mass stars or compact objects, though then the self-lensing optical depths are overestimates of the true optical depth by a factor of roughly 3. The distributions of timescales of the events and their spatial variation across the face of the LMC disk offer possibilities of identifying the dominant lens population. In propitious circumstances, an experiment lifetime of less than 5 years is sufficient to decide between the competing claims of Milky Way halos and LMC lenses. However, LMC disks can sometimes mimic the microlensing properties of Galactic halos for many years and then decades of survey work are needed. In this case observations of parallax or binary caustic events offer the best hope for current experiments to deduce the lens population. The difficult models to distinguish are Milky Way halos in which the lens fraction is low (< 10 %) and fattened LMC disks composed of lenses with a typical mass of low luminosity stars or greater. A next-generation wide-area microlensing survey, such as the proposed ``SuperMACHO'' experiment, will be able to distinguish even these difficult models with just a year or two of data.Comment: 25 pages, 4 figures, The Astrophysical Journal (in press

    The Origin of Primordial Dwarf Stars and Baryonic Dark Matter

    Full text link
    I present a scenario for the production of low mass, degenerate dwarfs of mass >0.1M>0.1 M_{\odot} via the mechanism of Lenzuni, Chernoff & Salpeter (1992). Such objects meet the mass limit requirements for halo dark matter from microlensing surveys while circumventing the chemical evolution constraints on normal white dwarf stars. I describe methods to observationally constrain this scenario and suggest that such objects may originate in small clusters formed from the thermal instability of shocked, heated gas in dark matter haloes, such as suggested by Fall & Rees (1985) for globular clusters.Comment: TeX, 4 pages plus 2 postscript figures. To appear in Astrophysical Journal Letter

    Eclipsing binaries in the MACHO database: New periods and classifications for 3031 systems in the Large Magellanic Cloud

    Get PDF
    Eclipsing binaries offer a unique opportunity to determine fundamental physical parameters of stars using the constraints on the geometry of the systems. Here we present a reanalysis of publicly available two-color observations of about 6800 stars in the Large Magellanic Cloud, obtained by the MACHO project between 1992 and 2000 and classified as eclipsing variable stars. Of these, less than half are genuine eclipsing binaries. We determined new periods and classified the stars, 3031 in total, using the Fourier parameters of the phased light curves. The period distribution is clearly bimodal, reflecting refer to the separate groups of more massive blue main sequence objects and low mass red giants. The latter resemble contact binaries and obey a period-luminosity relation. Using evolutionary models, we identified foreground stars. The presented database has been cleaned of artifacts and misclassified variables, thus allowing searches for apsidal motion, tertiary components, pulsating stars in binary systems and secular variations with time-scales of several years.Comment: 11 figures, 9 pages, accepted for publication in Ap

    Gravitational Lensing by Dark Matter Caustics

    Get PDF
    Dark matter caustics have specific density profiles and, therefore, precisely calculable gravitational lensing properties. We present a formalism which simplifies the relevant calculations, and apply it to four specific cases. In the first three, the line of sight is tangent to a smooth caustic surface. The curvature of the surface at the tangent point is positive, negative or zero. In the fourth case the line of sight passes near a cusp. For each we derive the map between the image and source planes. In some cases, a point source has multiple images and experiences infinite magnification when the images merge. Unfortunately, for the dark matter caustics expected in realistic galactic halo models, the angular resolution required to resolve the multiple images is not presently achievable. A more promising approach aims to observe the distortions caused by dark matter caustics in the images of extended sources such as radio jets.Comment: 36 pages, 11 figure

    The MIK2/SCOOP Signaling System Contributes to Arabidopsis Resistance Against Herbivory by Modulating Jasmonate and Indole Glucosinolate Biosynthesis.

    Get PDF
    Initiation of plant immune signaling requires recognition of conserved molecular patterns from microbes and herbivores by plasma membrane-localized pattern recognition receptors. Additionally, plants produce and secrete numerous small peptide hormones, termed phytocytokines, which act as secondary danger signals to modulate immunity. In Arabidopsis, the Brassicae-specific SERINE RICH ENDOGENOUS PEPTIDE (SCOOP) family consists of 14 members that are perceived by the leucine-rich repeat receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR LIKE KINASE 2 (MIK2). Recognition of SCOOP peptides elicits generic early signaling responses but knowledge on how and if SCOOPs modulate specific downstream immune defenses is limited. We report here that depletion of MIK2 or the single PROSCOOP12 precursor results in decreased Arabidopsis resistance against the generalist herbivore Spodoptera littoralis but not the specialist Pieris brassicae. Increased performance of S. littoralis on mik2-1 and proscoop12 is accompanied by a diminished accumulation of jasmonic acid, jasmonate-isoleucine and indolic glucosinolates. Additionally, we show transcriptional activation of the PROSCOOP gene family in response to insect herbivory. Our data therefore indicate that perception of endogenous SCOOP peptides by MIK2 modulates the jasmonate pathway and thereby contributes to enhanced defense against a generalist herbivore

    The Rise Time of Type Ia Supernovae from the Supernova Legacy Survey

    Get PDF
    We compare the rise times of nearby and distant Type Ia supernovae (SNe Ia) as a test for evolution using 73 high-redshift spectroscopically-confirmed SNe Ia from the first two years of the five year Supernova Legacy Survey (SNLS) and published observations of nearby SN. Because of the ``rolling'' search nature of the SNLS, our measurement is approximately 6 times more precise than previous studies, allowing for a more sensitive test of evolution between nearby and distant supernovae. Adopting a simple t2t^2 early-time model (as in previous studies), we find that the rest-frame BB rise times for a fiducial SN Ia at high and low redshift are consistent, with values 19.100.17+0.18(stat)±0.2(syst)19.10^{+0.18}_{-0.17}({stat}) \pm 0.2 ({syst}) and 19.580.19+0.2219.58^{+0.22}_{-0.19} days, respectively; the statistical significance of this difference is only 1.4 \sg . The errors represent the uncertainty in the mean rather than any variation between individual SN. We also compare subsets of our high-redshift data set based on decline rate, host galaxy star formation rate, and redshift, finding no substantive evidence for any subsample dependence.Comment: Accepted for publication in AJ; minor changes (spelling and grammatical) to conform with published versio
    corecore