An expression is provided for the self-lensing optical depth of the thin LMC
disk surrounded by a shroud of stars at larger scale heights. The formula is
written in terms of the vertical velocity dispersion of the thin disk
population. If tidal forcing causes 1-5 % of the disk mass to have a height
larger than 6 kpc and 10-15 % to have a height above 3 kpc, then the
self-lensing optical depth of the LMC is 0.7−1.9×10−7, which is
within the observational uncertainties. The shroud may be composed of bright
stars provided they are not in stellar hydrodynamical equilibrium.
Alternatively, the shroud may be built from low mass stars or compact objects,
though then the self-lensing optical depths are overestimates of the true
optical depth by a factor of roughly 3. The distributions of timescales of the
events and their spatial variation across the face of the LMC disk offer
possibilities of identifying the dominant lens population. In propitious
circumstances, an experiment lifetime of less than 5 years is sufficient to
decide between the competing claims of Milky Way halos and LMC lenses. However,
LMC disks can sometimes mimic the microlensing properties of Galactic halos for
many years and then decades of survey work are needed. In this case
observations of parallax or binary caustic events offer the best hope for
current experiments to deduce the lens population. The difficult models to
distinguish are Milky Way halos in which the lens fraction is low (< 10 %) and
fattened LMC disks composed of lenses with a typical mass of low luminosity
stars or greater. A next-generation wide-area microlensing survey, such as the
proposed ``SuperMACHO'' experiment, will be able to distinguish even these
difficult models with just a year or two of data.Comment: 25 pages, 4 figures, The Astrophysical Journal (in press