52 research outputs found
Mechanical resistance in unstructured proteins
Single-molecule pulling experiments on unstructured proteins linked to
neurodegenerative diseases have measured rupture forces comparable to those for
stable folded proteins. To investigate the structural mechanisms of this
unexpected force resistance, we perform pulling simulations of the amyloid
{\beta}-peptide (A{\beta}) and {\alpha}-synuclein ({\alpha}S), starting from
simulated conformational ensembles for the free monomers. For both proteins,
the simulations yield a set of rupture events that agree well with the
experimental data. By analyzing the conformations right before rupture in each
event, we find that the mechanically resistant structures share a common
architecture, with similarities to the folds adopted by A{\beta} and {\alpha}S
in amyloid fibrils. The disease-linked Arctic mutation of A{\beta} is found to
increase the occurrence of highly force-resistant structures. Our study
suggests that the high rupture forces observed in A{\beta} and {\alpha}S
pulling experiments are caused by structures that might have a key role in
amyloid formation.Comment: v3: Added correct journal reference plus minor correction
An effective all-atom potential for proteins
We describe and test an implicit solvent all-atom potential for simulations
of protein folding and aggregation. The potential is developed through studies
of structural and thermodynamic properties of 17 peptides with diverse
secondary structure. Results obtained using the final form of the potential are
presented for all these peptides. The same model, with unchanged parameters, is
furthermore applied to a heterodimeric coiled-coil system, a mixed alpha/beta
protein and a three-helix-bundle protein, with very good results. The
computational efficiency of the potential makes it possible to investigate the
free-energy landscape of these 49--67-residue systems with high statistical
accuracy, using only modest computational resources by today's standards
Exploiting protein flexibility to predict the location of allosteric sites
Background: Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. Results: By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained methodology is able to capture the effects triggered by allosteric ligands already described in the literature. Conclusions: We introduce a simple computational approach to predict the presence and position of allosteric sites in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins with reported allosteric properties. The software developed in this work is available upon request from the authors
Dimer Formation Enhances Structural Differences between Amyloid β-Protein (1–40) and (1–42): An Explicit-Solvent Molecular Dynamics Study
Amyloid -protein (A) is central to the pathology of Alzheimer's disease. A 5% difference in the primary structure of the two predominant alloforms, A and A, results in distinct assembly pathways and toxicity properties. Discrete molecular dynamics (DMD) studies of A and A assembly resulted in alloform-specific oligomer size distributions consistent with experimental findings. Here, a large ensemble of DMD–derived A and A monomers and dimers was subjected to fully atomistic molecular dynamics (MD) simulations using the OPLS-AA force field combined with two water models, SPCE and TIP3P. The resulting all-atom conformations were slightly larger, less compact, had similar turn and lower -strand propensities than those predicted by DMD. Fully atomistic A and A monomers populated qualitatively similar free energy landscapes. In contrast, the free energy landscape of A dimers indicated a larger conformational variability in comparison to that of A dimers. A dimers were characterized by an increased flexibility in the N-terminal region D1-R5 and a larger solvent exposure of charged amino acids relative to A dimers. Of the three positively charged amino acids, R5 was the most and K16 the least involved in salt bridge formation. This result was independent of the water model, alloform, and assembly state. Overall, salt bridge propensities increased upon dimer formation. An exception was the salt bridge propensity of K28, which decreased upon formation of A dimers and was significantly lower than in A dimers. The potential relevance of the three positively charged amino acids in mediating the A oligomer toxicity is discussed in the light of available experimental data
β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides
Protein misfolding disorders are associated with conformational changes in specific proteins, leading to the formation of potentially neurotoxic amyloid fibrils. During pathogenesis of prion disease, the prion protein misfolds into β-sheet rich, protease-resistant isoforms. A key, hydrophobic domain within the prion protein, comprising residues 109–122, recapitulates many properties of the full protein, such as helix-to-sheet structural transition, formation of fibrils and cytotoxicity of the misfolded isoform. Using all-atom, molecular simulations, it is demonstrated that the monomeric 109–122 peptide has a preference for α-helical conformations, but that this peptide can also form β-hairpin structures resulting from turns around specific glycine residues of the peptide. Altering a single amino acid within the 109–122 peptide (A117V, associated with familial prion disease) increases the prevalence of β-hairpin formation and these observations are replicated in a longer peptide, comprising residues 106–126. Multi-molecule simulations of aggregation yield different assemblies of peptide molecules composed of conformationally-distinct monomer units. Small molecular assemblies, consistent with oligomers, comprise peptide monomers in a β-hairpin-like conformation and in many simulations appear to exist only transiently. Conversely, larger assemblies are comprised of extended peptides in predominately antiparallel β-sheets and are stable relative to the length of the simulations. These larger assemblies are consistent with amyloid fibrils, show cross-β structure and can form through elongation of monomer units within pre-existing oligomers. In some simulations, assemblies containing both β-hairpin and linear peptides are evident. Thus, in this work oligomers are on pathway to fibril formation and a preference for β-hairpin structure should enhance oligomer formation whilst inhibiting maturation into fibrils. These simulations provide an important new atomic-level model for the formation of oligomers and fibrils of the prion protein and suggest that stabilization of β-hairpin structure may enhance cellular toxicity by altering the balance between oligomeric and fibrillar protein assemblies
Binding Free Energy Landscape of Domain-Peptide Interactions
Peptide recognition domains (PRDs) are ubiquitous protein domains which mediate large numbers of protein interactions in the cell. How these PRDs are able to recognize peptide sequences in a rapid and specific manner is incompletely understood. We explore the peptide binding process of PDZ domains, a large PRD family, from an equilibrium perspective using an all-atom Monte Carlo (MC) approach. Our focus is two different PDZ domains representing two major PDZ classes, I and II. For both domains, a binding free energy surface with a strong bias toward the native bound state is found. Moreover, both domains exhibit a binding process in which the peptides are mostly either bound at the PDZ binding pocket or else interact little with the domain surface. Consistent with this, various binding observables show a temperature dependence well described by a simple two-state model. We also find important differences in the details between the two domains. While both domains exhibit well-defined binding free energy barriers, the class I barrier is significantly weaker than the one for class II. To probe this issue further, we apply our method to a PDZ domain with dual specificity for class I and II peptides, and find an analogous difference in their binding free energy barriers. Lastly, we perform a large number of fixed-temperature MC kinetics trajectories under binding conditions. These trajectories reveal significantly slower binding dynamics for the class II domain relative to class I. Our combined results are consistent with a binding mechanism in which the peptide C terminal residue binds in an initial, rate-limiting step
- …