587 research outputs found

    Machine learning algorithms for the prediction of conception success to a given insemination in lactating dairy cows

    Get PDF
    peer-reviewedThe ability to accurately predict the conception outcome for a future mating would be of considerable benefit for producers in deciding what mating plan (i.e., expensive semen or less expensive semen) to implement for a given cow. The objective of the present study was to use herd- and cow-level factors to predict the likelihood of conception success to a given insemination (i.e., conception outcome not including embryo loss); of particular interest in the present study was the usefulness of milk mid-infrared (MIR) spectral data in augmenting the accuracy of the prediction model. A total of 4,341 insemination records with conception outcome information from 2,874 lactations on 1,789 cows from 7 research herds for the years 2009 to 2014 were available. The data set was separated into a calibration data set and a validation data set using either of 2 approaches: (1) the calibration data set contained records from all 7 farms for the years 2009 to 2011, inclusive, and the validation data set included data from the 7 farms for the years 2012 to 2014, inclusive, or (2) the calibration data set contained records from 5 farms for all 6 yr and the validation data set contained information from the other 2 farms for all 6 yr. The prediction models were developed with 8 different machine learning algorithms in the calibration data set using standard 10-times 10-fold cross-validation and also by evaluating in the validation data set. The area under curve (AUC) for the receiver operating curve varied from 0.487 to 0.675 across the different algorithms and scenarios investigated. Logistic regression was generally the best-performing algorithm. The AUC was generally inferior for the external validation data sets compared with the calibration data sets. The inclusion of milk MIR in the prediction model generally did not improve the accuracy of prediction. Despite the fair AUC for predicting conception outcome under the different scenarios investigated, the model provided a reasonable prediction of the likelihood of conception success when the high predicted probability instances were considered; a conception rate of 85% was evident in the top 10% of inseminations ranked on predicted probability of conception success in the validation data set

    Catastrophizing mediates the relationship between the personal belief in a just world and pain outcomes among chronic pain support group attendees

    Get PDF
    Health-related research suggests the belief in a just world can act as a personal resource that protects against the adverse effects of pain and illness. However, currently, little is known about how this belief, particularly in relation to one’s own life, might influence pain. Consistent with the suggestions of previous research, the present study undertook a secondary data analysis to investigate pain catastrophizing as a mediator of the relationship between the personal just world belief and chronic pain outcomes in a sample of chronic pain support group attendees. Partially supporting the hypotheses, catastrophizing was negatively correlated with the personal just world belief and mediated the relationship between this belief and pain and disability, but not distress. Suggestions for future research and intervention development are made

    The potential of Fourier transform infrared spectroscopy of milk samples to predict energy intake and efficiency in dairy cows

    Get PDF
    peer-reviewedKnowledge of animal-level and herd-level energy intake, energy balance, and feed efficiency affect day-to-day herd management strategies; information on these traits at an individual animal level is also useful in animal breeding programs. A paucity of data (especially at the individual cow level), of feed intake in particular, hinders the inclusion of such attributes in herd management decision-support tools and breeding programs. Dairy producers have access to an individual cow milk sample at least once daily during lactation, and consequently any low-cost phenotyping strategy should consider exploiting measureable properties in this biological sample, reflecting the physiological status and performance of the cow. Infrared spectroscopy is the study of the interaction of an electromagnetic wave with matter and it is used globally to predict milk quality parameters on routinely acquired individual cow milk samples and bulk tank samples. Thus, exploiting infrared spectroscopy in next-generation phenotyping will ensure potentially rapid application globally with a negligible additional implementation cost as the infrastructure already exists. Fourier-transform infrared spectroscopy (FTIRS) analysis is already used to predict milk fat and protein concentrations, the ratio of which has been proposed as an indicator of energy balance. Milk FTIRS is also able to predict the concentration of various fatty acids in milk, the composition of which is known to change when body tissue is mobilized; that is, when the cow is in negative energy balance. Energy balance is mathematically very similar to residual energy intake (REI), a suggested measure of feed efficiency. Therefore, the prediction of energy intake, energy balance, and feed efficiency (i.e., REI) from milk FTIRS seems logical. In fact, the accuracy of predicting (i.e., correlation between predicted and actual values; root mean square error in parentheses) energy intake, energy balance, and REI from milk FTIRS in dairy cows was 0.88 (20.0 MJ), 0.78 (18.6 MJ), and 0.63 (22.0 MJ), respectively, based on cross-validation. These studies, however, are limited to results from one research group based on data from 2 contrasting production systems in the United Kingdom and Ireland and would need to be replicated, especially in a range of production systems because the prediction equations are not accurate when the variability used in validation is not represented in the calibration data set. Heritable genetic variation exists for all predicted traits. Phenotypic differences in energy intake also exists among animals stratified based on genetic merit for energy intake predicted from milk FTIRS, substantiating the usefulness of such FTIR-predicted phenotypes not only for day-to-day herd management, but also as part of a breeding strategy to improve cow performance.the Irish Department of Agriculture, Food and the Marin

    Effect of using internal teat sealant with or without antibiotic therapy at dry-off on subsequent somatic cell count and milk production

    Get PDF
    peer-reviewedThe objective of this study was to assess the effect of treating cows with teat sealant only compared with antibiotic plus teat sealant at drying off on weekly somatic cell count, potential intramammary infection, and milk production across the entire subsequent lactation. In 3 research herds in the south of Ireland, cows with SCC that did not exceed 200,000 cells/mL in the previous lactation (LowSCC) were randomly assigned to 1 of 2 treatments at drying off: internal teat sealant alone (ITS) or antibiotic plus teat sealant (AB+ITS). Cows with SCC that exceeded 200,000 cells/mL in the previous lactation were treated with AB+ITS and included in the analyses as a separate group (HighSCC). Weekly individual animal composite SCC records were available for 654 cow lactations and were transformed to somatic cell scores (SCS) for the purpose of analysis. Data were divided into 3 data sets to represent records obtained (1) up to 35 DIM, (2) up to 120 DIM, and (3) across the lactation. Foremilk secretions were taken from all quarters at drying off, at calving, 2 wk after calving, and in mid-lactation and were cultured to detect the presence of bacteria. The LowSCC cows treated with ITS alone had higher daily milk yield (0.67 kg/d) across lactation compared with LowSCC cows treated with AB+ITS. The LowSCC cows treated with ITS alone had higher SCS in early, up to mid, and across lactation compared with LowSCC cows treated with AB+ITS. We detected no difference in weekly SCS of LowSCC cows treated with ITS alone and SCS of HighSCC cows. The least squares means back-transformed SCC across lactation of the LowSCC cows treated with ITS alone, LowSCC cows treated with AB+ITS, and HighSCC cows were 41,523, 34,001, and 38,939 cells/mL respectively. The odds of LowSCC cows treated with ITS alone having bacteria present in their foremilk across lactation was 2.7 (95% confidence interval: 1.91 to 3.85) and 1.6 (1.22 to 2.03) times the odds of LowSCC cows treated with AB+ITS and of HighSCC cows treated with AB+ITS, respectively. In this study, Staphylococcus aureus was the most prevalent pathogen isolated from the population. Recategorizing the threshold for LowSCC cows as ≤150,000 cells/mL or ≤100,000 cells/mL in the previous lactation had no effect on the results. The results indicate that herds with good mastitis control programs may use ITS alone at dry-off in cows with SCC <200,000 cells/mL across lactation with only a small effect on herd SCC

    Analysis of cybersecurity threats in Industry 4.0: the case of intrusion detection

    Get PDF
    Nowadays, industrial control systems are experiencing a new revolution with the interconnection of the operational equipment with the Internet, and the introduction of cutting-edge technologies such as Cloud Computing or Big data within the organization. These and other technologies are paving the way to the Industry 4.0. However, the advent of these technologies, and the innovative services that are enabled by them, will also bring novel threats whose impact needs to be understood. As a result, this paper provides an analysis of the evolution of these cyber-security issues and the requirements that must be satis ed by intrusion detection defense mechanisms in this context.Springer ; Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Effect of using internal teat sealant with or without antibiotic therapy at dry-off on subsequent somatic cell count and milk production

    Get PDF
    peer-reviewedThe objective of this study was to assess the effect of treating cows with teat sealant only compared with antibiotic plus teat sealant at drying off on weekly somatic cell count, potential intramammary infection, and milk production across the entire subsequent lactation. In 3 research herds in the south of Ireland, cows with SCC that did not exceed 200,000 cells/mL in the previous lactation (LowSCC) were randomly assigned to 1 of 2 treatments at drying off: internal teat sealant alone (ITS) or antibiotic plus teat sealant (AB+ITS). Cows with SCC that exceeded 200,000 cells/mL in the previous lactation were treated with AB+ITS and included in the analyses as a separate group (HighSCC). Weekly individual animal composite SCC records were available for 654 cow lactations and were transformed to somatic cell scores (SCS) for the purpose of analysis. Data were divided into 3 data sets to represent records obtained (1) up to 35 DIM, (2) up to 120 DIM, and (3) across the lactation. Foremilk secretions were taken from all quarters at drying off, at calving, 2 wk after calving, and in mid-lactation and were cultured to detect the presence of bacteria. The LowSCC cows treated with ITS alone had higher daily milk yield (0.67 kg/d) across lactation compared with LowSCC cows treated with AB+ITS. The LowSCC cows treated with ITS alone had higher SCS in early, up to mid, and across lactation compared with LowSCC cows treated with AB+ITS. We detected no difference in weekly SCS of LowSCC cows treated with ITS alone and SCS of HighSCC cows. The least squares means back-transformed SCC across lactation of the LowSCC cows treated with ITS alone, LowSCC cows treated with AB+ITS, and HighSCC cows were 41,523, 34,001, and 38,939 cells/mL respectively. The odds of LowSCC cows treated with ITS alone having bacteria present in their foremilk across lactation was 2.7 (95% confidence interval: 1.91 to 3.85) and 1.6 (1.22 to 2.03) times the odds of LowSCC cows treated with AB+ITS and of HighSCC cows treated with AB+ITS, respectively. In this study, Staphylococcus aureus was the most prevalent pathogen isolated from the population. Recategorizing the threshold for LowSCC cows as ≤150,000 cells/mL or ≤100,000 cells/mL in the previous lactation had no effect on the results. The results indicate that herds with good mastitis control programs may use ITS alone at dry-off in cows with SCC <200,000 cells/mL across lactation with only a small effect on herd SCC

    Genetic and nongenetic factors associated with milk color in dairy cows

    Get PDF
    peer-reviewedMilk color is one of the sensory properties that can influence consumer choice of one product over another and it influences the quality of processed dairy products. This study aims to quantify the cow-level genetic and nongenetic factors associated with bovine milk color traits. A total of 136,807 spectra from Irish commercial and research herds (with multiple breeds and crosses) were used. Milk lightness (Lˆ*) , red-green index (aˆ*) and yellow-blue index (bˆ*) were predicted for individual milk samples using only the mid-infrared spectrum of the milk sample. Factors associated with milk color were breed, stage of lactation, parity, milking-time, udder health status, pasture grazing, and seasonal calving. (Co)variance components for Lˆ*,aˆ* , and bˆ* were estimated using random regressions on the additive genetic and within-lactation permanent environmental effects. Greater bˆ* value (i.e., more yellow color) was evident in milk from Jersey cows. Milk Lˆ* increased consistently with stage of lactation, whereas aˆ* increased until mid lactation to subsequently plateau. Milk bˆ* deteriorated until 31 to 60 DIM, but then improved thereafter until the end of lactation. Relative to multiparous cows, milk yielded by primiparae was, on average, lighter (i.e., greater Lˆ* ), more red (i.e., greater aˆ* ), and less yellow (i.e., lower bˆ* ). Milk from the morning milk session had lower Lˆ*,aˆ*, and bˆ* Heritability estimates (±SE) for milk color varied between 0.15 ± 0.02 (30 DIM) and 0.46 ± 0.02 (210 DIM) for Lˆ* , between 0.09 ± 0.01 (30 DIM) and 0.15 ± 0.02 (305 DIM) for aˆ* , and between 0.18 ± 0.02 (21 DIM) and 0.56 ± 0.03 (305 DIM) for bˆ* For all the 3 milk color features, the within-trait genetic correlations approached unity as the time intervals compared shortened and were generally <0.40 between the peripheries of the lactation. Strong positive genetic correlations existed between bˆ* value and milk fat concentration, ranging from 0.82 ± 0.19 at 5 DIM to 0.96 ± 0.01 at 305 DIM and confirming the observed phenotypic correlation (0.64, SE = 0.01). Results of the present study suggest that breeding strategies for the enhancement of milk color traits could be implemented for dairy cattle populations. Such strategies, coupled with the knowledge of milk color traits variation due to nongenetic factors, may represent a tool for the dairy processors to reduce, if not eliminate, the use of artificial pigments during milk manufacturing

    The use of mid-infrared spectrometry to predict body energy status of Holstein cows

    Get PDF
    Energy balance, especially in early lactation, is known to be associated with subsequent health and fertility in dairy cows. However, its inclusion in routine management decisions or breeding programs is hindered by the lack of quick, easy, and inexpensive measures of energy balance. The objective of this study was to evaluate the potential of mid-infrared (MIR) analysis of milk, routinely available from all milk samples taken as part of large-scale milk recording and milk payment operations, to predict body energy status and related traits in lactating dairy cows. The body energy status traits investigated included energy balance and body energy content. The related traits of body condition score and energy intake were also considered. Measurements on these traits along with milk MIR spectral data were available on 17 different test days from 268 cows (418 lactations) and were used to develop the prediction equations using partial least squares regression. Predictions were externally validated on different independent subsets of the data and the results averaged. The average accuracy of predicting body energy status from MIR spectral data was as high as 75% when energy balance was measured across lactation. These predictions of body energy status were considerably more accurate than predictions obtained from the sometimes proposed fat-to-protein ratio in milk. It is not known whether the prediction generated from MIR data are a better reflection of the true (unknown) energy status than the actual energy status measures used in this study. However, results indicate that the approach described may be a viable method of predicting individual cow energy status for a large scale of application

    Factors associated with milk processing characteristics predicted by mid-infrared spectroscopy in a large database of dairy cows

    Get PDF
    Despite milk processing characteristics being important quality traits, little is known about the factors underlying their variability, due primarily to the resources required to measure these characteristics in a sufficiently large population. Cow milk coagulation properties (rennet coagulation time, curd-firming time, curd firmness 30 and 60 min after rennet addition), heat coagulation time, casein micelle size, and pH were generated from available mid-infrared spectroscopy prediction models. The prediction models were applied to 136,807 spectra collected from 9,824 Irish dairy cows from research and commercial herds. Sources of variation were investigated using linear mixed models that included the fixed effects of calendar month of test; milking time in the day; linear regressions on the proportion of Friesian, Jersey, Montb\ue9liarde, Norwegian Red, and \u201cother\u201d breeds in the cow; coefficients of heterosis and of recombination loss; parity; stage of lactation; and the 2-way interaction parity 7 stage of lactation. Withinand across-parity cow effects, contemporary group, and a residual term were also included as random effects in the model. Supplementary analyses considered the inclusion of either test-day milk yield or milk protein concentration as fixed-effects covariates in the multiple regression models. Milk coagulation properties were most favorable (i.e., short rennet coagulation time and strong curd firmness) for cheese manufacturing in early lactation, concurrent with the lowest values of both pH and casein micelle size. Milk coagulation properties and pH deteriorated in mid lactation but improved toward the end of lactation. In direct contrast, heat coagulation time was more favorable in mid lactation and less suitable (i.e., shorter) for high temperature treatments in both early and late lactation. Relative to multiparous cows, primiparous cows, on average, yielded milk with shorter rennet coagulation time and longer heat coagulation time. Milk from the evening milking session had shorter rennet coagulation time and greater curd firmness, as well as lower heat coagulation time and lower pH compared with milk from the morning session. Jersey cows, on average, yielded milk more suitable for cheese production rather than for milk powder production. When protein concentration was included in the model, the improvement of milk coagulation properties toward the end of lactation was no longer apparent. Results from the present study may aid in decisionmaking for milk manufacturing, especially in countries characterized by a seasonal supply of fresh milk
    • …
    corecore