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ABSTRACT

Knowledge of animal-level and herd-level energy 
intake, energy balance, and feed efficiency affect day-
to-day herd management strategies; information on 
these traits at an individual animal level is also useful 
in animal breeding programs. A paucity of data (es-
pecially at the individual cow level), of feed intake in 
particular, hinders the inclusion of such attributes in 
herd management decision-support tools and breeding 
programs. Dairy producers have access to an individual 
cow milk sample at least once daily during lactation, 
and consequently any low-cost phenotyping strategy 
should consider exploiting measureable properties in 
this biological sample, reflecting the physiological sta-
tus and performance of the cow. Infrared spectroscopy 
is the study of the interaction of an electromagnetic 
wave with matter and it is used globally to predict milk 
quality parameters on routinely acquired individual cow 
milk samples and bulk tank samples. Thus, exploiting 
infrared spectroscopy in next-generation phenotyping 
will ensure potentially rapid application globally with 
a negligible additional implementation cost as the in-
frastructure already exists. Fourier-transform infrared 
spectroscopy (FTIRS) analysis is already used to predict 
milk fat and protein concentrations, the ratio of which 
has been proposed as an indicator of energy balance. 
Milk FTIRS is also able to predict the concentration of 
various fatty acids in milk, the composition of which is 
known to change when body tissue is mobilized; that is, 
when the cow is in negative energy balance. Energy bal-
ance is mathematically very similar to residual energy 
intake (REI), a suggested measure of feed efficiency. 
Therefore, the prediction of energy intake, energy bal-
ance, and feed efficiency (i.e., REI) from milk FTIRS 
seems logical. In fact, the accuracy of predicting (i.e., 
correlation between predicted and actual values; root 

mean square error in parentheses) energy intake, en-
ergy balance, and REI from milk FTIRS in dairy cows 
was 0.88 (20.0 MJ), 0.78 (18.6 MJ), and 0.63 (22.0 MJ), 
respectively, based on cross-validation. These studies, 
however, are limited to results from one research group 
based on data from 2 contrasting production systems in 
the United Kingdom and Ireland and would need to be 
replicated, especially in a range of production systems 
because the prediction equations are not accurate when 
the variability used in validation is not represented in 
the calibration data set. Heritable genetic variation 
exists for all predicted traits. Phenotypic differences 
in energy intake also exists among animals stratified 
based on genetic merit for energy intake predicted from 
milk FTIRS, substantiating the usefulness of such FT-
IR-predicted phenotypes not only for day-to-day herd 
management, but also as part of a breeding strategy to 
improve cow performance.
Key words: spectroscopy, energy intake, residual feed 
intake, efficiency, chemometrics

INTRODUCTION

Efficient and effective day-to-day herd management 
requires real-time access to accurate and useful data 
from a range of different sources to aid in making 
informed decisions. Such data sources may reflect the 
quantity and quality of feed (e.g., DM digestibility of 
grass in grazing production systems), the prevailing 
environmental conditions (i.e., temperature and humid-
ity of the housing infrastructure or predicted weather 
conditions), as well as the physiological state and per-
formance of each individual cow or the herd as a whole. 
Real-time, within-unit (i.e., cow or herd), temporal 
deviations can be useful to evaluate recent manage-
ment changes, preempt situations that may require 
remedial action, and modify decision-support tools to 
determine what actions, if any, need to be taken. Also 
considered within the realm of decision-support tools is 
the recommended germplasm to improve certain per-
formance characteristics at an individual animal level; 
not only do such decisions require knowledge on the 
performance characteristics of the individual female, 
they also require accurate information on the genetic 
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merit of the candidate mates. Accurate genetic (and 
genomic) evaluations depend on routine access to large 
quantities of phenotypic information on the animal 
itself or its relatives from which to derive genetic (and 
genomic) evaluations for the performance characteris-
tics of interest (Daetwyler et al., 2008).

The dairy cattle production system is a rather unique 
livestock production system in that access exists, usu-
ally 2 to 3 times daily, to a biological sample (i.e., milk) 
that could be used to reveal the physiological state of 
each cow. Most, if not all, of the major constituents in 
milk are synthesized in the mammary gland derived 
from precursors absorbed from the blood. For example, 
fatty acids in milk originate either from chylomicrons 
and very low density lipoproteins in blood or are syn-
thesized from acetate derived from circulating blood 
acetate. Metabolomic and proteomic interrogation of 
dairy cow milk has identified a plethora of compounds 
(Klein et al., 2012; Lu et al., 2013) and several have 
been hypothesized to be useful predictors of cow health 
and performance (Klein et al., 2012; Lu et al., 2013). 
Thus, the analysis of milk routinely harvested in dairy 
production systems provides a rich source of potentially 
useful phenotypes to aid in day-to-day farm manage-
ment and breeding decisions. This review focuses 
specifically on the potential of infrared spectroscopy 
of milk to generate useful animal-level phenotypes, in 
particular energy intake and efficiency; infrared spec-
troscopy was chosen because this technology is already 
used globally to routinely quantify milk quality param-
eters in milk samples and thus any discoveries can be 
readily implemented at negligible additional cost. Such 
milk samples originate from individual cows but also 
herd bulk tank samples.

INFRARED SPECTROSCOPY

Spectroscopy may be defined as the study of the in-
teraction of an electromagnetic wave with matter. All 
spectroscopic methods, with the exception of mass spec-
troscopy, may be classified based on the energy used in 
the measurement approach. Electromagnetic radiation 
involves waves being transmitted from a source, travel-
ing in a straight line until the waves encounter matter, 
at which time they may be either reflected or refracted. 
Vibrational movements of molecules affect absorbance 
in the infrared region, which can be subsequently de-
tected by spectrometers as absorbance bands. The in-
frared radiation can also induce rotational movements 
of the molecules, resulting in rotational bands. Chemo-
metrics is the process of extracting information from 
chemical systems using data-mining techniques relating 
the spectral data to phenotypes.

Two types of spectroscopy commonly used in the 
agri-food industry are near-infrared (NIRS) and mid-
infrared (MIRS) spectroscopy, which differ simply in 
the region of the electromagnetic spectrum considered. 
Absorbance by matter of light in the mid-infrared 
(MIR) region corresponds to fundamental bands of 
molecular vibrations, whereas absorbance in the near-
infrared (NIR) region corresponds to overtones and 
combinations of these fundamental bands (Williams 
and Norris, 1987). The consequences of this difference 
are that (1) the absorbance coefficients are consider-
ably smaller in the NIR range, which allows light to 
better penetrate into the matter, and (2) the NIR 
spectrum can be overloaded with information because 
of the abundance of combination and overtone bands. 
Hence, the specificity of bands is reduced in the NIR 
region compared with the MIR region. Moreover, the 
spectrum in the NIR region is more affected by factors 
that affect the diffusion of light, such as the physical 
structure and the presence of water (Williams and Nor-
ris, 1987). Infrared spectroscopy has been successfully 
used in the quantification of agriculturally important 
compounds in various sample types, including animal 
feed (Edney et al., 1994), meat (Kamruzzaman et al., 
2012), soil (Hummel et al., 2001), and milk (Soyeurt et 
al., 2011).

Infrared Spectroscopy to Predict Milk Quality

The usefulness of FTIRS, particularly in the MIR 
region, to predict various milk quality parameters has 
been discussed in detail elsewhere (Berry et al., 2013a; 
De Marchi et al., 2014). Moreover, FTIRS is used glob-
ally for routine quantification of, at the very least, total 
fat, total protein, and lactose concentrations in milk 
(Luinge et al., 1993). Recent studies have documented 
the ability of FTIRS to predict individual fatty acids 
and groups of milk fatty acids with moderate to high 
accuracy (Figure 1; Rutten et al., 2009; Soyeurt et 
al., 2011; Maurice-Van Eijndhoven et al., 2013); milk 
technological traits such as milk coagulation properties 
(Dal Zotto et al., 2008; De Marchi et al., 2009; Visentin 
et al., 2015), and milk titratable acidity (Toffanin et 
al., 2014; Visentin et al., 2015) with moderate accu-
racy; and milk minerals (Soyeurt et al., 2009; Toffanin 
et al., 2014), individual milk proteins (Bonfatti et al., 
2011; Rutten et al., 2011; McDermott et al., 2016), and 
free amino acids (McDermott et al., 2016) with low 
to moderate accuracy. A summary of the accuracy of 
FTIRS at predicting a selection of milk quality traits 
is presented in Figure 1. Although prediction accuracy 
is generally sufficient to use predicted traits in breed-
ing programs, it is not sufficient for payment purposes, 
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particularly in the case of milk proteins, free amino 
acids, and minerals.

The equipment necessary to undertake MIR analy-
sis of milk is expensive but its high throughput (up 
to 500 samples per hour) translates to a low cost per 
sample. The equipment for analyzing milk in the NIR 
region is, however, less expensive and thus amenable for 
routine use, potentially on-farm. Coppa et al. (2014) 
documented good predictive ability of milk fatty acid 
content using NIR (and MIR) on fresh milk samples.

Infrared Spectroscopy to Predict  
Animal Characteristics

Few studies, to date, have evaluated the potential of 
infrared spectroscopy to predict animal-related char-
acteristics. These studies have been solely confined to 
FTIR analysis of milk samples, and no study to date has 
evaluated the potential of NIR analysis of milk samples 
to predict animal characteristics, even though it has 
been recently shown (Coppa et al., 2014) that NIR can 
provide useful predictions of milk fatty acid content. 
Animal studies using milk FTIR have been mainly lim-
ited to predicting body energy status (McParland et 
al., 2011, 2012, 2014), energy intake (McParland et al., 
2011, 2012, 2014), methane emissions (Dehareng et al., 

2012; Vanlierde et al., 2015), feed efficiency (McPar-
land et al., 2014), risk of ketosis (de Roos et al., 2007), 
and likelihood of conception (Hempstalk et al., 2015). 
Of these animal phenotypes, the accuracy of prediction 
from FTIR was greatest for methane emissions, milk 
acetone, and energy intake, with coefficients of determi-
nation in cross validation in the range from 0.72 to 0.79 
(Figure 1; de Roos et al., 2007; Dehareng et al., 2012; 
McParland et al., 2012).

Milk fat-to-protein ratio is commonly cited as an 
indicator of energy balance in dairy cows (Grieve et 
al., 1986; Friggens et al., 2007), although recent analy-
sis at an individual cow level brings into question the 
usefulness of this ratio as a proxy for energy balance 
(McParland et al., 2011). The accuracy of predicting 
energy balance directly in an external validation data 
set from just test-day milk, fat, protein, and lactose 
yields was poor at 0.38 (McParland et al., 2014); the 
external validation animals used, although differ-
ent animals to those used in the development of the 
calibration equations, were generally managed within 
the same production system. Nonetheless, high milk 
fat relative to protein content is hypothesized as an 
indicator of negative energy balance because cows mo-
bilize body reserves in the form of triglycerides to fulfill 
the energy requirement of lactation. A proportion of 

Figure 1. Coefficient of determination of cross validation for prediction of milk and animal phenotypes across recent studies. The maximum 
coefficient of determination reported in each study was used to generate the (unweighted) average across studies. Error bars represent the maxi-
mum and minimum coefficient of determination obtained across studies. Values in parentheses correspond to the number of studies included 
in the average statistic. Details on grouped traits and references for studies are included in the supplementary file (http://dx.doi.org/10.3168/
jds.2015-10051).
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the triglycerides enter the milk, causing the milk fat 
concentration to increase. The ability of milk FTIR to 
predict milk fat and protein concentration is well es-
tablished (Luinge et al., 1993); thus, it seems plausible 
that the FTIR analysis of milk should indeed be able to 
predict cow energy status.

Mobilization of adipose fatty acids during a period 
of negative energy balance results in an increase in the 
concentration of C18 fatty acid in milk and a conse-
quent inhibition of de novo synthesis of fatty acids by 
the mammary gland (Palmquist et al., 1993; Barber 
et al., 1997). The ability of FTIR analysis of milk to 
predict milk fatty acid content (Rutten et al., 2009; 
Soyeurt et al., 2011; Maurice-Van Eijndhoven et al., 
2013) further substantiates why FTIRS should indeed 
be useful to predict cow energy status (including energy 
intake). Moreover, the ability to differentiate between 
different fatty acids in milk suggests that the FTIR 
spectrum itself should be a better predictor of energy 
balance than simply fat-to-protein ratio or fatty acid 
concentration alone. Additionally, the presence of ke-
tone bodies in milk is thought to reflect negative energy 
balance (Reist et al., 2002). Several studies have docu-
mented the ability of FTIR analysis of milk to predict 
acetone, acetoacetate, and β-hydroxybutyrate (Hansen, 
1999; Heuer et al., 2001; de Roos et al., 2007), the pres-
ence of which are known to be associated with ketosis. 
Therefore, a strong biological rationale exists as to why 
energy balance (and energy intake) can be predicted 
from milk FTIR.

Two studies have documented the ability of the FTIR 
spectrum to predict methane emissions in dairy cows 
(Dehareng et al., 2012; Vanlierde et al., 2015). Those 
studies hypothesized that the change in milk fatty 
acid profile, which can be predicted from the FTIR 
spectrum, may be linked to eructed methane emissions. 
This link materializes from ruminal fermentation re-
sulting in the production of de novo milk fatty acids 
as well as eructation of methane emissions (Chilliard 
et al., 2001). By incorporating stage of lactation into 
the prediction model, Vanlierde et al. (2015) indirectly 
accounted for metabolic status and thus improved the 
lactation profile of predicted eructed methane.

WHY IS FEED EFFICIENCY PREDICTABLE  
FROM INFRARED ANALYSIS OF MILK?

Energy balance (EB) may be defined as the differ-
ence between energy intake and energy output; energy 
output generally includes energy for milk production, 
body maintenance (approximated) from metabolic live 
weight, growth, and pregnancy:

 Energy balance = EINTAKE – (EMILK + EMAINTENANCE   

 + EGROWTH + EPREGNANCY),  [1]

where EINTAKE = energy intake, EMILK = energy cost of 
lactation, EMAINTENANCE = energy cost of maintenance, 
EGROWTH = energy cost of growth, and EPREGNANCY = 
energy cost of pregnancy. The respective energy de-
mands and costs of the different animal attributes are 
generally derived from nutritional tables (e.g., Jarrige 
et al., 1986; NRC, 2001), and EB may be defined in 
units of ME or net energy.

Residual energy intake (REI) is a commonly used 
definition of apparent feed efficiency in growing 
animals and it is growing in popularity in dairy cows 
(Berry and Crowley, 2013). Residual energy intake may 
be defined at the level of ME or net energy, and it 
can be defined as the difference between actual energy 
intake and predicted energy intake (Byerly, 1941). The 
expected energy intake per unit change in each of the 
energy sinks or sources of energy in the REI equation 
can be based on nutritional tables (e.g., Jarrige et al., 
1986; NRC, 2001) such as those used to calculate EB; 
however, least squares regression analysis of the popu-
lation under investigation is more commonly used to 
derive the required regression coefficients (Coleman et 
al., 2010; Hurley et al., 2016). Residual energy intake 
may be defined mathematically as

 REI = EINTAKE – (EMILK + EMAINTENANCE + EGROWTH   

 + EPREGNANCY) + EMOBILIZATION,  [2]

where EMOBILIZATION = energy gained from body tissue 
mobilization, and the other terms are as defined previ-
ously.

The mathematical definitions of EB (equation [1]) 
and REI (equation [2]) are very similar, with the ex-
ception of the (last) term in the REI equation to ac-
count for the energy supplied from the mobilization 
of body reserves. Animals with higher energy output 
relative to energy intake (i.e., in negative energy bal-
ance) catabolize body energy to make up the energy 
deficit. Thus, the correlation between EB and REI is 
expected to be unity if the change in live weight is 
zero and both traits are derived using the same energy 
coefficients for each incremental change in the energy 
sinks; Hurley et al. (2016) reported a correlation of 0.96 
between REI and EB in mid-lactation dairy cows when 
the change in live weight was close to zero. The strong 
relationship between EB and REI in lactating dairy 
cows is further substantiated by the strong similarity in 
lactation profile for each; both lactation profiles ascend 
in early lactation, reaching a plateau at approximately 
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125 DIM (Hurley et al., 2016). The strong biological 
justification discussed earlier for being able to predict 
cow energy status from milk FTIR, coupled with the 
empirical evidence for predicting energy intake and 
EB from FTIR (McParland et al., 2011, 2012, 2014), 
implies that feed efficiency, or at least REI, could also 
be predicted from milk FTIR.

Methane emissions represent a loss of approximately 
6% of ingested energy (Johnson and Johnson, 1995) 
and are therefore a likely contributing factor to differ-
ences among animals in feed efficiency. The aforemen-
tioned ability of FTIR analysis of milk to predict indi-
vidual cow methane emissions (Dehareng et al., 2012; 
Vanlierde et al., 2015) further confirms the biological 
hypothesis as to how milk FTIR could indeed be used 
to predict feed efficiency in lactating dairy cows.

OBSTACLES TO PREDICTION OF ENERGY INTAKE 
AND EFFICIENCY FROM MILK FTIR

The Link Between Milk Sample and Phenotype  

Predicting animal phenotypes from the FTIR spec-
trum of an individual milk sample is less straightfor-
ward than predicting an explicit milk phenotype. Un-
like the milk phenotype where the FTIR spectrum and 
gold standard test originate from the same sample (i.e., 
the same experimental unit usually measured under 
controlled laboratory conditions), animal phenotypes 
are indirectly linked to the FTIR via the milk sample. 
Typically, the animal phenotype (e.g., feed intake) is 
based on an average across a day or a week and is as-
sociated with the milk FTIR spectrum obtained from 
one or all milkings on the same day or during the same 
week as when the animal phenotypic value was gener-
ated (McParland et al., 2011). Moreover, the actual 
phenotype of an animal may not be reflected in the milk 
sample of that exact day, but in fact, the milk sample of 
(one of) the following days (e.g., the by-products from 
digestion of the energy ingested in a given day may 
not expressed in the milk of the cow until the following 
day) or a preceding day (e.g., conception; Hempstalk et 
al., 2015). As a means of representing the entire test-
day, Dehareng et al. (2012) used the average of the 
milk FTIR spectrum obtained from both a morning 
and an evening milking to predict methane emissions. 
However, Dehareng et al. (2012) noted that the time 
interval between the recording of the methane emission 
phenotype and the actual sampling of milk for FTIR 
analysis affected the accuracy of the subsequent pre-
diction equation (Dehareng et al., 2012); the average 
FTIR spectrum of milk samples collected in the evening 
after the methane measurement, and the morning 2 d 

after methane measurement provided the most robust 
equation to predict methane emission (Dehareng et al., 
2012). McParland et al. (2014) noted that the average 
of both the morning and evening milk FTIR spectra, 
either weighted by their respective milk yield or not, 
resulted in more accurate equations to predict energy 
intake and EB than prediction equations developed on 
the milk FTIR from either just the morning or just the 
evening milk sample.

Accuracy of the Gold Standard Measure

The accuracy of any prediction equation depends 
on the precision of measurement of the gold standard 
of the trait under investigation. Both feed efficiency 
and EB are index traits comprising individual animal 
intake, live weight, predicted milk composition (from 
FTIR), and maintenance requirements, as well as sub-
jectively scored BCS (Berry et al., 2006; Berry and 
Crowley, 2013). Therefore, the gold standard of these 
animal phenotypes contains (considerable) intrinsic 
measurement errors as well as underlying assump-
tions (i.e., maintenance requirements are a function of 
metabolic live weight). Errors include, for example, the 
contribution of gut fill to animal live weight, or the 
approximation of empty BW (Banos and Coffey, 2010) 
as an approach to remove the contribution of gut fill to 
measured animal live weight. Diurnal variability in live 
weight, however, is likely to exist. Although informa-
tion is lacking in dairy cows, Currie et al. (1989), using 
a data set of 40 growing steers on pasture, reported 
considerable within-day variability in live weight when 
measured with an automatic scales; the average range 
in live weight for any given day for a single specific 
steer, as an example, was 22.4 kg, with the maximum 
range within a single day being 40 kg (the steer was 
approximately 385 kg on this day, therefore the range 
was >10% of the mean). Body condition score is also 
a subjective measure of body fat depth (Roche et al., 
2009) and inter- and intraindividual variability in 
scoring is likely to exist (Veerkamp et al., 2002). An 
additional source of error in the definition of feed ef-
ficiency (or related traits such as EB) is the estimated 
regression coefficients of the statistical model used in 
the derivation of the phenotype of interest such as REI 
(Robinson, 2005). The accuracy of predicting the index 
traits of EB and REI was poorer than the accuracy of 
predicting energy intake across studies (McParland et 
al., 2011, 2012, 2014). However, error is also likely to 
exist in the measurement of both DMI (as opposed to 
feed offered) as well as the energy content of the diet in-
gested. Such errors in the estimation of feed intake are 
likely to be exacerbated in grazing production systems, 
in which grass feed intake is estimated using indigest-
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ible plant components such as n-alkanes (Mayes et al. 
1986; Dove and Mayes 1991). Similarly, diet selection 
may exist when more than one animal has access to the 
same feed station or pasture. Overall, the gold standard 
measures of feed intake and efficiency are likely to con-
tain considerable inaccuracies and thus achieving very 
high accuracy of prediction will prove difficult.

Size of the Available Data Set

Accurate and robust prediction equations are predi-
cated on, among other things, having a large data set 
from which to derive the prediction equations. The cost 
of accurately measuring, in particular, feed intake in 
lactating dairy cows hinders the generation of large 
data sets especially from different cows (as opposed to 
serial measurements on the same cow). For accurate 
quantification of EB, for example, calorimetric cham-
bers are required and throughput is therefore expected 
to be slow, resource-intensive, and costly, resulting in 
a small calibration data set. Small data set sizes also 
affect the robustness of the validation of the equations, 
as a dilemma exists as to whether to maximize the size 
of the calibration data set to generate accurate and 
robust prediction equations or maximize the size of the 
validation data set to ensure a scientifically sound vali-
dation. The accuracy of FTIR-based prediction models 
generated from cross-validation tends to be superior, 
almost always, to external validation irrespective of 
trait (McParland et al., 2011, 2012, 2014; Hempstalk et 
al., 2015; McDermott et al., 2016; Visentin et al., 2015).

McParland et al. (2011, 2014) undertook an external 
validation by splitting a single data set into samples 
used exclusively for model calibration and separate 
samples exclusively for validation. However, samples in 
the external and calibration data sets were from the 
same population and sampling dates. It is crucial that 
any prediction model is properly validated and this gen-
erally requires validation in a completely independent 
data set. To date, only one study (McParland et al., 
2012) has attempted to externally validate equations to 
predict energy intake and EB on an independent data 
set. Equations were developed using a research herd 
of Holsteins fed a TMR diet and milked thrice daily 
in Scotland and validated on an Irish research herd of 
grazing Holstein-Friesians milked twice daily. Results 
from that study showed that despite high accuracy of 
cross validation (rCV), ranging from 0.87 to 0.88 [root 
mean square error (RMSE) <23.40 MJ] for energy 
intake, accuracy in external validation (rV) was poor 
and ranged from 0.21 to 0.27 (RMSE <25.96 MJ). A 
similar reduction in prediction accuracy was reported 
for EB when equations were externally validated in the 

grazing population of Holstein-Friesians (McParland et 
al., 2012).

Heterogeneity in Factors Contributing  
to Animal Phenotypes

Energy intake, feed efficiency, or indeed EB are not 
homogeneous phenotypes, in that animals may achieve 
the same energy intake with a different diet composi-
tion (i.e., greater intake of a lower energy diet or a 
lesser intake of a higher energy diet); moreover, fac-
tors other than energy (e.g., protein intake, mineral 
balance) may also interact with the effect of energy 
intake on detectable compounds in the milk. This phe-
nomenon is further exacerbated in index traits such as 
REI or EB, which are a combination of several different 
traits; for example, 2 dairy cows can have the same REI 
but have very different energy intake if differences in 
milk production, live weight, or any of the other energy 
sinks also differ among animals (Berry and Crowley, 
2013). Likewise, multiple factors contribute to whether 
or not an insemination results in pregnancy, making 
the prediction of pregnancy (from milk FTIR or other 
factors) very difficult (Hempstalk et al., 2015). Further-
more, the accuracy of validation of prediction equations 
across different production systems is likely to be af-
fected by such issues—contrasting diets or animals of 
different size or yield potential, for example, can result 
in animals achieving the same phenotypic value from 
dramatically different underlying principles. Milk qual-
ity–based traits, on the other hand, are generally more 
homogeneous; milk pH for example is simply the pH of 
the milk.

PREDICTION MODELS

Prediction models are generally developed using 
cross-validation in a calibration or reference data set 
and should ideally be externally validated in an inde-
pendent data set. The most commonly used statistics 
to determine the precision and robustness of the de-
veloped prediction models include the coefficient of 
determination in cross validation (R2

cv) or validation 
(R2

v), the accuracy of cross (rcv) or external valida-
tion (rv); that is, the square root of the coefficient of 
determination, and the standard error of calibration, 
cross validation, and external validation. The linear 
regression coefficient of the gold standard measure 
on the predicted values should also be estimated, as 
it should be close to unity with an intercept of near 
zero. The bias in prediction (i.e., the average differ-
ence between the gold standard measure and predicted 
values) is also important, because if prediction bias for 
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EB exists, producers may be instructed that their cows 
are in negative energy balance and that remedial action 
is warranted, when, in fact, the cows were truly not in 
negative energy balance.

Pretreatment

Spectral data are sometimes pretreated to sharpen 
the absorbance bands of the spectra in an attempt to 
strengthen the relationship between the infrared spec-
trum and the gold standard phenotype. The commonly 
performed spectral pretreatments were reviewed by De 
Marchi et al. (2014). McParland et al. (2011) failed to 
detect an improvement in prediction accuracy of either 
EB or energy intake when either the first derivative or 
boxcar smoothing of spectral data was used compared 
with when no pretreatment of spectral data was ap-
plied (McParland et al., 2011). Similarly, Dehareng et 
al. (2012) did not pretreat spectral data when predict-
ing methane emissions. Nonetheless, unlike the studies 
of Soyeurt et al. (2011, 2012), which found merit in 
the use of spectral pretreatment, only one spectrom-
eter was used in the studies of Dehareng et al. (2012) 
and McParland et al. (2011) and therefore the effect of 
pretreatment of spectral data on accuracy of prediction 
should still be investigated.

Additional Predictor Variables

The main advantage of using the FTIR spectrum as 
a predictor tool is its immediate and relatively seamless 
integration into the milk recording system. Thus, infor-
mation other than just the FTIR spectrum may also 
exist, which could be incorporated into the prediction 
equations to strengthen the predictability. Including 
milk yield for example, which is also recorded during 
milk testing, has been reported to improve the accuracy 
of prediction of both energy intake and EB in dairy 
cows (McParland et al., 2011, 2012, 2014).

Prediction Algorithms

Partial least squares regression analysis is a dimension 
reduction technique and is the most commonly used 
statistical approach in the development of prediction 
equations using FTIR spectral data from milk (McPar-
land et al., 2011; Soyeurt et al., 2011; De Marchi et al., 
2014). The number of factors included in the partial 
least squares models varies from 8 to 20 (McParland 
et al., 2011, 2012, 2014). Several alternative statistical 
algorithms have been used in relating infrared spectral 
data to phenotypes of interest. Hempstalk et al. (2015) 
evaluated 8 alternative machine-learning algorithms 
when attempting to relate milk FTIR spectral data to 

the likelihood of conception in dairy cows. The algo-
rithms evaluated included C4.5 Decision Trees, naïve 
Bayes, Bayesian network, support vector machines, 
partial least squares, logistic regression (implemented 
using a machine-learning framework), and both ran-
dom and rotation forest; logistic regression was gener-
ally the best performing algorithm (Hempstalk et al., 
2015). No statistical algorithm other than partial least 
squares has been used when attempting to predict the 
energy intake complex from milk FTIR in dairy cows 
(McParland et al., 2011, 2012, 2014).

Stage of Lactation

Energy intake and EB are lactation stage dependent. 
In early lactation, animals cannot consume sufficient 
energy to meet the energy requirements of lactation, re-
sulting in negative energy balance (Berry et al., 2006), 
which affects subsequent reproductive performance 
(Beam and Butler, 1999). Buttchereit et al. (2010) 
documented a stronger correlation between fat-to-
protein ratio and EB in early lactation (DIM = 35; r = 
−0.42) than in later lactation (DIM = 175; r < −0.15). 
McParland et al. (2011) also documented a stronger 
correlation between fat-to-protein ratio and EB in early 
lactation (DIM <61; r = −0.28) compared with the 
correlation estimated using data from all stages of lac-
tation (r = −0.09). Despite this, accuracy of predicting 
EB and energy intake directly from the FTIR spectrum 
did not improve when analysis was limited to only re-
cords from early lactation (McParland et al., 2011), 
although the accuracy of predicting REI improved 
slightly when predictions were generated using data 
from early lactation compared with those generated 
using data across all stages of lactation (McParland et 
al., 2014). Nonetheless, the data sets used to calibrate 
the prediction equations were smaller (less than 25% of 
the entire data set) when only early lactation records 
were considered (McParland et al., 2011, 2012, 2014) 
and this may have affected the accuracy and robustness 
of the developed equations.

ACCURACY OF PREDICTING ENERGY INTAKE  
AND EFFICIENCY

To date, all studies to predict energy intake and effi-
ciency have been undertaken by one research group us-
ing data from just 2 populations of lactating Holstein(-
Friesian) dairy cows (McParland et al., 2011, 2012, 
2014). One data set comprised data from a population 
of UK Holstein cows housed indoors and fed a TMR 
diet (McParland et al., 2011, 2012); the other data set 
comprised data from grazing Holstein-Friesian cows 
in Ireland. A paucity of individual animal energy in-
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take data with corresponding milk FTIR-spectroscopy 
data is the main limiting factor to generating FTIR 
prediction equations for energy intake and efficiency 
in dairy cows. Soyeurt et al. (2011) documented the 
ability to collate both milk quality data and FTIR 
data from several countries and use in the development 
and validation of more robust prediction equations for 
milk fatty acid content. Berry et al. (2014) summarized 
how individual animal feed intake data from several 
international sources could be appropriately combined. 
Thus, combining individual cow feed intake data and 
corresponding milk FTIR data from different sources 
should be possible as a strategy to improve the accura-
cy, robustness, and therefore applicability of milk FTIR 
prediction equations for energy intake and efficiency, 
albeit with all the aforementioned associated nuances 
associated with the merging of data from alternative 
sources.

Energy Intake

Accuracy of prediction (r) of energy intake from 
milk FTIR in cross validation and external validation 
across all studies undertaken is presented in Figure 2. 
Although Figure 2 represents only 2 populations, the 
results are generated from 3 studies with different, 
albeit overlapping, data sets. McParland et al. (2011, 
2012, 2014) used data from a single milk sample [morn-
ing, midday (McParland et al., 2011), or evening] to 
make predictions; McParland et al. (2014) used data 
combined from concurrent evening and morning milk 
samples to make predictions. When a single milk 
sample was used for prediction, energy intake was more 
accurately predicted for cows fed TMR in confinement 
compared with the grazing cows. Accuracy (rCV) of 
predicting energy intake in the TMR-fed cows ranged 
from 0.73 (RMSE <30 MJ; predicted using just the 
FTIR spectrum of a single milk sample; McParland et 
al., 2011) to 0.88 (RMSE = 20 MJ; predicted using a 
single milk sample with milk yield; Figure 2; McPar-
land et al., 2011, 2012). Accuracy (rCV) of predicting 
energy intake in the grazing dairy cows ranged from 
0.64 (RMSE = 28.6 MJ; predicted using just the FTIR 
spectrum of a single milk sample; McParland et al., 
2014) to 0.76 (RMSE = 23.8 MJ; predicted using both 
morning and evening milk samples combined along 
with milk yield; Figure 2; McParland et al., 2014). In-
cluding milk yield as a predictor of energy intake in the 
indoor-fed cows yielded an average improvement in rCV 
of 0.13; improvement in rV was 0.16 (McParland et al., 
2011, 2012). In the grazing dairy cows, inclusion of milk 
yield also improved rCV of energy intake (McParland 
et al., 2012, 2014). However, the benefit of including 
milk yield as a predictor variable was less conclusive for 

the grazing population in external validation (Figure 
2). External validation data sets were smaller for the 
grazing population (n = 214 to 406) compared with the 
TMR population (n = 433 to 739).

The TMR-fed confinement population also benefitted 
from a larger calibration data set with DMI recorded 
routinely using HOKO feeders (Hokofarm Group BV, 
Marknesse, the Netherlands). Energy intake in the 
grazing cows was measured using the n-alkane tech-
nique, which is based on the ratio of n-alkane content 
in the cow feces relative to that in the herbage. Herbage 
samples are manually collected to be as representative 
as possible of what the grazing cow will consume. Good 
concordance exists between the mean estimated feed 
intake of the experimental herds and herbage disap-

Figure 2. Accuracy of prediction (r) of energy intake in cross 
validation (a) and external validation (b) from alternative predictive 
models across 2 populations: cows housed indoors on a TMR diet ( ) 
and cows housed outdoors on a grass-based diet (�). Prediction mod-
els were based on including only Fourier transform infrared spectral 
data as a predictor (FTIR), or using both Fourier transform infrared 
spectral data and milk yield as predictors (FTIR & milk). Prediction 
models were based on data from a single morning, midday, or evening 
milk sample (single milk sample) or from both morning and evening 
milk samples (combined milk samples). Error bars represent the maxi-
mum and minimum accuracy values across studies.
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pearance rate at a herd level (Ganche et al., 2014). 
Nonetheless, discrepancies at the individual cow level 
due to factors such as diet selection are likely to exist, 
thereby affecting the accuracy of individual cow feed 
intake and energy intake.

Energy Balance

Accuracy of prediction (r) of EB in cross validation 
and external validation across all available studies is 
presented in Figure 3. Across studies, EB was more 
poorly predicted than energy intake, although the dif-
ference in prediction accuracy between populations was 

small (Figure 3; McParland et al., 2012, 2014). Overall, 
the rCV ranged from 0.67 (RMSE <24.9 MJ; predicted 
using both morning and evening milk samples together 
with milk yield in the grazing population; McParland 
et al., 2014) to 0.78 (RMSE = 18.6 MJ; predicted using 
a single milk sample plus milk yield in the TMR-fed 
confinement population; McParland et al., 2011). The 
inclusion of milk yield as an independent variable in the 
prediction model improved the accuracy of prediction 
of EB in the confinement population only by 0.02 to 
0.03 units.

Feed Efficiency

Residual energy intake was best predicted using 
combined FTIR data from concurrent evening and 
morning milk samples; rCV ranged from 0.50 (RMSE = 
25.3 MJ) to 0.63 (RMSE = 22.0 MJ; McParland et al., 
2014). External validation accuracy was slightly lower 
and ranged from 0.48 (RMSE = 26.48 MJ) to 0.60 
(RMSE = 23.39 MJ; McParland et al., 2014). Adding 
milk yield to the prediction model did not improve the 
accuracy of prediction, which is not surprising given 
that REI will be phenotypically independent of milk 
yield when estimated using least squares regression, as 
was undertaken by McParland et al. (2014). However, 
when REI was calculated using the multiple regression 
model but substituting actual energy intake with FTIR-
predicted energy intake, the correlation with true REI 
was slightly stronger (rV = 0.63) than when predicted 
directly from the FTIR spectrum (maximum rV = 0.60; 
McParland et al., 2014), suggesting the former to be a 
better approach to estimating REI. Nonetheless, feed 
efficiency and the other animal-level phenotypes such 
as energy intake and EB were not as well predicted 
from the FTIR spectrum as has been achieved for milk 
fatty acid content (Figure 1).

RECOMMENDATIONS FOR DEVELOPMENT  
OF PREDICTION EQUATIONS

Soyeurt et al. (2011) demonstrated the benefit to 
equation accuracy and robustness from having a large 
calibration data set comprising lots of variability in 
both the gold standard measures and spectra. McPar-
land et al. (2012) further demonstrated how the use of 
prediction equations is limited to sample populations 
that exhibit similar spectral variability to the data used 
to calibrate prediction equations. To date, equations 
developed to predict intake and efficiency, although 
moderately accurate, contain limited variability, and 
are therefore not immediately applicable to most popu-
lations. Indeed, equations have been developed using 
data from both Holsteins (McParland et al., 2011, 

Figure 3. Accuracy of prediction (r) of energy balance in cross 
validation (a) and external validation (b) from alternative predictive 
models across 2 populations: cows housed indoors on a total mixed 
ration diet ( ) and cows housed outdoors on a grass-based diet (�). 
Prediction models were based on including only Fourier transform 
infrared spectral data as a predictor (FTIR), or using both Fourier 
transform infrared spectral data and milk yield as predictors (FTIR 
& milk). Prediction models were based on data from a single morn-
ing, midday, or evening milk sample (single milk sample) or from both 
morning and evening milk samples (combined milk samples). Error 
bars represent the maximum and minimum accuracy values across 
studies.
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2012) and Holstein-Friesians (McParland et al., 2012, 
2014) only, albeit on contrasting production systems 
(McParland et al., 2011, 2012, 2014). As already dis-
cussed, access to large quantities of individual animal 
feed intake data hinders the accuracy of equations to 
predict intake and efficiency. Existing equations would 
benefit from collaboration between parties with access 
to both energy intake and FTIRS data on individual 
animals. Alternatively, populations could develop pop-
ulation-specific equations based on their own data sets.

For true validation, prediction equations should be 
applied to a population completely independent of 
that from which they were generated. McParland et al. 
(2012) attempted to validate in a population of grazing 
cows, equations developed from a population of cows 
fed a TMR diet in confinement. However, the accu-
racy of prediction when equations were calibrated on 
the confinement data set and validated on the grazing 
data set was poor and it was concluded that prediction 
equations should only be applied to populations with 
similar spectral patterns to what was represented in the 
calibration data set (McParland et al., 2012). The Ma-
halanobis distance can be calculated for each spectrum 
of interest relative to the calibration spectral data, and 
spectra deviating considerably from the calibration 
spectrum may not be predicted or should be provided 
under caution.

Limited data sets with access to both individual 
animal energy intake and FTIR spectroscopy of milk 
samples exist, inhibiting external validation across 
populations of the prediction equations developed. 
This is an active area of research, and several research 
teams internationally are working to gather such data 
sets in an attempt to (1) strengthen and validate pre-
diction equations of energy intake and efficiency, and 
(2) develop additional population-specific prediction 
equations. A spectral data set of samples with energy 
intake data already exists. Routinely generated spectra 
should be compared with this spectral data set (e.g., 
Mahalanobis distance), and animals with a spectrum 
deviating from the data set identified. These animals 
should subsequently be phenotyped for energy intake, 
EB, and REI. Because these animal-related traits are 
repeatable (Berry et al., 2007), measures taken several 
days or weeks (or parities) later are still likely to be 
informative. From a genetic evaluations perspective, 
different genetic families should ideally be represented 
in the calibration data set to facilitate a more precise 
estimate of the genetic correlation between the true 
and predicted animal characteristics for inclusion in 
the selection index. In addition, participating bodies 
should harmonize their definition of the gold standard 
measures, participate in ring-testing of their spectrom-
eters, and harmonize all spectrometers. Care should be 

taken, however, in adding too much variability because 
the leverage of some samples on the regression may ac-
tually reduce the general applicability of the developed 
prediction equations. Consideration should be given to 
using only spectra in the calibration process that re-
semble the spectra where the equations will be applied; 
this therefore potentially implies a different calibration 
data set for different situations although comparability 
of predictions must exist. One possible (simple) option 
is to have a set of samples common to each predicted 
data set and adjust all predictions accordingly so that 
the mean prediction and variability of the common 
samples remains constant.

APPLICATION OF PREDICTION MODELS  
IN DAIRY PRODUCTION

Genetic Selection

A trait must fulfill 3 criteria before consideration for 
inclusion in a breeding goal. The trait must

 1. Be important—this could be economically, so-
cially, or environmentally important;

 2. Exhibit genetic variation—even if lowly heri-
table, once genetic variation is present, then 
genetic gain is possible;

 3. Be (ideally easily and inexpensively) measure-
able or genetically correlated with a heritable 
measureable trait.

Feed costs constitute a large proportion of dairy pro-
duction costs globally (Shalloo et al., 2004; Ho et al., 
2005), confirming the economic importance of the feed 
intake complex. Wall et al. (2008) documented the eco-
nomic value for energy balance in dairy production sys-
tems. Additionally, producing more human-edible ani-
mal-derived protein and energy sources more efficiently 
is not only socially important but also important in 
minimizing the environmental footprint of modern-day 
dairy production systems (Berry et al., 2015). Energy 
balance is known to be associated with compromised 
health and fertility in dairy cows (Beam and Butler, 
1999; Collard et al., 2000), the latter being of growing 
concern among modern-day consumers. Therefore, not 
only do energy intake and EB have (economic) value in 
their own right but they may also be useful as (early) 
predictors of other economically important traits within 
a selection index framework.

The presence of ample genetic variation in the feed 
intake complex has already been extensively discussed 
(Berry and Crowley, 2013). Therefore, routine access 
to phenotypic information from which to derive genetic 
evaluations is heretofore the only factor hindering the 
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inclusion of the traits related to the feed intake complex 
in dairy breeding programs. This is important even in 
the current environment where genomic evaluations 
prevail in most national genetic evaluations because 
routine access to accurate phenotypes is still an im-
portant requirement to underpin genomic prediction 
accuracy. Berry and Crowley (2013) documented the 
usefulness of selection index theory for predicting ge-
netic merit for feed intake using a selection of routinely 
measured traits such as milk yield, live weight, and type 
traits; Berry and Crowley (2013) conceded, however, 
that their approach was not (fully) capturing genetic 
variability in net feed efficiency. Figure 4 illustrates the 
accuracy of selection for true energy intake based on the 
respective FTIR-predicted values of energy intake; the 
phenotypic and genetic parameters used in the selection 
index calculations are in Table 1. In the absence of gold 
standard measures, the accuracy of selection cannot be 
greater than the genetic correlation between the gold 
standard and predicted values (i.e., 0.84; McParland et 
al., 2015). The underlying assumption here, however, is 
that the gold standard measure is in fact just that, and 
no errors in measurement (i.e., energy intake) or calcu-
lation (i.e., energy balance, REI) exist, although this is 
likely to also be reflected in the heritability. Moreover, 
what is not yet clear is whether the gold standard of EB 
is actually a better predictor of health and fertility than 
the FTIR-predicted value of EB; FTIRS may actually 

be capturing features in the milk that contribute to a 
stronger genetic correlation with health and fertility. 
Nonetheless, high accuracy of selection of the gold stan-
dard measures is still achievable through indirect se-
lection using the FTIR-predicted phenotypes. Because 
the FTIR spectrum is routinely generated during milk 
testing, these data are freely available. For example, 
FTIR-predicted energy intake on 43 progeny per sire 
will achieve the same accuracy of selection for the gold 
standard energy intake measure as 10 progeny per sire 
with gold standard energy intake measures (Figure 4).

McParland et al. (2015) quantified the genetic varia-
tion of FTIR-predicted energy intake and EB and the 
genetic associations between EB and energy intake 
measured either conventionally or predicted using milk 
FTIR spectroscopy. Heritability of the measured traits 
was greater than that of the respective FTIR-predicted 
trait; heritability of measured and predicted EB was 
0.16 and 0.10, respectively, whereas heritability of mea-
sured and predicted energy intake was 0.35 and 0.20, 
respectively (McParland et al., 2015). This is not un-
expected given the lack of unity phenotypic prediction 
accuracy of the gold standard measures from the FTIR 
spectrum. Furthermore, the genetic correlation be-
tween measured and FTIR-predicted energy intake was 
0.84, and between measured and FTIR-predicted EB 
was 0.54, indicating that selection on FTIR-predicted 
energy intake or EB would improve measured energy 

Figure 4. Accuracy of selection for true energy intake across different numbers of progeny with records for Fourier transform infrared 
(FTIR)-predicted energy intake alone (�), true energy intake (�), or both true and FTIR-predicted feed intake combined (�).
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intake or EB, respectively (McParland et al., 2015). 
McParland et al. (2015) predicted breeding values of 
FTIR-predicted energy intake for a group of animals 
with known energy intake. The regression coefficient 
of known energy intake on predicted breeding values 
based on FTIR-predicted energy intake was 0.82 (SE = 
0.25; P = 0.001), indicating that genetic selection based 
on FTIR-predicted intake would identify animals with 
differences in known energy intake.

No heritability estimates for REI predicted from milk 
FTIR exist in the literature. The genetic variance of 
REI can, however, be calculated as shown above (Berry 
et al., 2013b), where (co)variance components refer to 
the additive genetic (co)variance components estimated 
in this study, σ = variance, and EI = energy intake, MY 
= milk yield, FY = fat yield, PY = protein yield, LW = 
live weight, and BCS = body condition score. The phe-

notypic variance for REI was calculated using the same 
approach but substituting phenotypic (co)variance 
components for the genetic (co)variance components. 
The variance components used in the calculations are 
in Table 1. The heritability of REI was calculated 
based on the derived genetic and phenotypic variances. 
The proportion of phenotypic variance in true energy 
intake and predicted energy intake accounted for by 
milk yield, fat yield, protein yield, live weight, and BCS 
was 29 and 74%, respectively; the respective statistics 
for the proportion of genetic variance explained was 91 
and 47%. The heritability of REI calculated from true 
energy intake and FTIR-predicted energy intake was 
0.04 and 0.15, respectively. These estimates are similar 
to the mean heritability of 0.04 reported by Berry and 
Crowley (2013) based on a meta-analysis of 7 studies 
from lactating dairy and beef cows but greater than 

Table 1. Genetic standard deviation and heritability of various performance traits1 including true and Fourier transform infrared-predicted 
energy intake, as well as genetic (above diagonal) and phenotypic (below diagonal) correlations among the traits

Item
Milk yield 

(kg)
Fat yield 

(kg)
Protein  

yield (kg)
BCS 

(scale 1 to 5)
Live weight 

(kg)
True energy 
intake (MJ)

Predicted energy 
intake (MJ)

Genetic standard deviation 352.0 18.40 11.90 0.19 33.90 14.53 11.18
Heritability 0.28 0.44 0.32 0.58 0.60 0.35 0.20
Correlations        
 Milk yield  0.29 0.73 −0.46 −0.01 0.69 0.50
 Fat yield 0.62  0.62 −0.30 0.03 −0.07 0.08
 Protein yield 0.88 0.73  −0.43 −0.03 0.03 0.05
 BCS −0.18 −0.12 −0.11  0.44 0.09 0.12
 Live weight 0.14 0.14 0.20 0.44  0.66 0.40
 True energy intake 0.54 −0.09 0.11 0.12 0.56  0.84
 Predicted energy intake 0.44 −0.01 0.11 0.09 0.24 0.57  
1Genetic parameters and correlations among milk yield, fat yield, protein yield, BCS, and live weight were obtained from Berry et al. (2003), 
where milk yield = cummilk240, fat yield = cumfat240, protein yield = cumprot240, BCS = AVGBCS and live weight = AVGBW. Genetic 
parameters and correlations among performance traits and true and predicted energy intake were obtained from McParland et al. (2015).
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the heritability of 0.01 reported more recently (and 
included in the meta-analysis) in lactating US Holstein 
cows (Vallimont et al., 2011).

Management

Achieving optimum day-to-day herd management 
requires real-time access to data from which to make 
informed decisions. Ideally, the information should 
be available across time and at low cost so that al-
terations in management can be evaluated or signals 
of forthcoming potential issues can be identified early. 
Individual animal official milk testing is, however, gen-
erally undertaken, at best, every 4 wk. Nonetheless, 
bulk tank milk samples collected more often (i.e., daily 
or every 2 to 3 d) are also subjected to FTIR analysis 
and can thus be used to generate information on energy 
status or feed efficiency at the herd level. Moreover, 
because NIR detects overtones and combinations of the 
fundamental bands from the FTIR, the potential also 
exists to use lower-cost NIR equipment, either at the 
individual cluster level or at the herd milk-line level 
to more routinely (i.e., every milking) monitor cow or 
herd performance. The ability of NIRS to predict cow-
level characteristics needs to be investigated, as has 
previously been undertaken for milk quality (Coppa et 
al., 2014).

Routine access to information on cow performance 
and physiological status opens up considerable op-
portunities for more detailed precision farming; this is 
particularly true for grazing production systems where, 
for example, phenotyping of the pasture in a rotational 
grazing system could be undertaken based on the per-
formance of the herd (i.e., yield and milk quality). Such 
information could be used to identify paddocks for 
reseeding or that may require (tailored) fertilization. 
Herd energy status predictions could also be used as a 
guide to whether the recently allocated pasture allow-
ance was sufficient to meet the energy demands of the 
lactating herd.

Several alternative statistical approaches exist for 
modeling longitudinal data. Random regression models 
are now commonly used in the modeling of longitudinal 
data in dairy cow genetic studies (Berry et al., 2003, 
2006); in dairy cattle, these random regression models 
on milk production are commonly termed “test-day 
models.” A fixed regression is fitted to model the under-
lying mean of the population or sub-population (e.g., 
parity); individual animal deviations from the fixed 
regression are modeled using random regressions, which 
are sometimes partitioned into an additive genetic ef-
fect and a permanent environmental effect. Summing 
the individual animal’s daily random effects and the 

associated fixed effects generates an animal-specific lac-
tation profile, which can be used to interpolate between 
test-days. The advantage of this approach is that not 
only is it useful for day-to-day herd management but 
the additive genetic random regression coefficients can 
be used in breeding programs to select for animals with 
more favorable lactation profile characteristics (i.e., 
total milk yield, persistent lactations). Moreover, the 
herd-level solutions are a good representation of herd 
management because they are independent of the ge-
netic merit of the animals on the farm, as well as other 
potential confounding effects in the model (e.g., herd 
age structure). Such information can be used to bench-
mark herds against each other, and supplementary data 
available (e.g., diet type) can be subsequently used in 
an attempt to decipher why inter-herd performance 
differences exist. Bastin et al. (2009) applied random 
regression methodology to the modeling of milk urea 
nitrogen in milk (predicted from FTIR), which they 
suggested could be used in decision-support tools.

CONCLUSIONS

Routine access to accurate information is fundamen-
tal to informed management and breeding decisions. 
Such information should ideally be available at low 
cost and not impinge on day-to-day herd management. 
Infrared spectroscopic analysis of milk is a nondestruc-
tive technique that could be implemented in-line to 
provide real-time information or cow or herd status, 
in the future. The accuracy (r) of predicting energy 
intake, energy balance, and feed efficiency in dairy 
cows reached 0.88, 0.78, and 0.63, respectively, based 
on cross-validation. Accuracy of prediction in a com-
pletely external validation data set based on produc-
tion systems not represented in the validation data set 
was, as expected, poor. Expansion in variability within 
the data set used to generate the prediction equations 
is therefore required to ensure greater robustness of the 
developed prediction equations and applicability to a 
wider population.
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