39 research outputs found

    A New Adjustment of Laplace Transform for Fractional Bloch Equation in NMR Flow

    Get PDF
    This work purpose suggest a new analytical technique called the fractional homotopy analysis transform method (FHATM) for solving time fractional Bloch NMR (nuclear magnetic resonance) flow equations, which are a set of macroscopic equations that are used for modeling nuclear magnetization as a function of time. The true beauty of this article is the coupling of the homotopy analysis method and the Laplace transform method for systems of fractional differential equations. The solutions obtained by the proposed method indicate that the approach is easy to implement and computationally very attractive

    Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction

    Get PDF
    The present paper investigates the effect of a mathematical model describing the aforementioned process in which the ambient nanofluid in the presence of suction/injection and magnetic field are taken into consideration. The flow is induced by an infinite elastic sheet which is stretched along its own plane. The stretching/shrinking of the sheet is assumed to be proportional to the distance from the slit. The governing equations are reduced to a nonlinear ordinary differential equation by means of similarity transformation. The consequential nonlinear equation is solved analytically. Consequences show that the flow field can be divided into a near-field region and a far-field region. Suction on the surface plays an important role in the flow development in the near-field whereas the far-field is responsible mainly by stretching. The electromagnetic effect plays exactly the same role as the MHD, which is to reduce the horizontal flow resulting from stretching. It is shown that the behavior of the fluid flow changes with the change of the nanoparticles type. The present study throws light on the analytical solution of a class of laminar boundary layer equations arising in the stretching/shrinking sheet problem

    Effect of Porous Medium and Copper Heat Sink on Cooling of Heat-Generating Element

    No full text
    Cooling of heat-generating elements is a challenging problem in engineering. In this article, the transient free convection of a temperature-dependent viscosity liquid inside the porous cavity with copper radiator and the heat-generating element is studied using mathematical modeling techniques. The vertical and top walls of the chamber are kept at low constant temperature, while the bottom wall is kept adiabatic. The working fluid is a heat-conducting liquid with temperature-dependent viscosity. A mathematical model is developed based on dimensionless stream function, vorticity, and temperature variables. The governing properties are the variable viscosity, geometric parameters of the radiator, and size of thermally insulated strip on vertical surfaces of the cavity. The effect of these parameters on the energy transport and circulation patterns are analyzed numerically. Based on the numerical results obtained, recommendations are given on the optimal values of the governing parameters for the effective operation of the cooling system. It is shown that the optimal number of radiator fins for the cooling system configuration under consideration is 3. In addition, the thermal insulation of the vertical walls and the increased thickness of the radiator fins have a negative effect on the operation of the cooling system

    Darcy Forchhiemer imposed exponential heat source-sink and activation energy with the effects of bioconvection over radially stretching disc

    No full text
    Abstract The Darcy–Forchheimer model is a commonly used and accurate method for simulating flow in porous media, proving beneficial for fluid separation, heat exchange, subsurface fluid transfer, filtration, and purification. The current study aims to describe heat and mass transfer in ternary nanofluid flow on a radially stretched sheet with activation energy. The velocity equation includes Darcy–Fochheimer porous media effects. The novelty of this study is enhanced by incorporating gyrotactic microorganisms which are versatile and in nanofluid can greatly improve the thermal conductivity and heat transfer properties of the base fluid, resulting in more efficient heat transfer systems. Furthermore, the governing PDEs are reduced to ODEs via appropriate similarity transformations. The influence of numerous parameters is expanded and physically depicted through the graphical illustration. As the Forchheimer number escalates, so do the medium's porosity and drag coefficient, resulting in more resistive forces and, as a result, lowering fluid velocity. It has been discovered that increasing the exponential heat source/sink causes convective flows that are deficient to transport heat away efficiently, resulting in a slower heat transfer rate. The concentration profile accumulates when the activation energy is large, resulting in a drop in the mass transfer rate. It is observed that the density of motile microorganisms increases with a rise in the Peclet number. Further, the results of the major engineering coefficients Skin-friction, Nusselt number, Sherwood number, and Microorganism density number are numerically examined and tabulated. Also, the numerical outcomes were found to be identical to the previous study

    Impact of Navier’s slip and MHD on laminar boundary layer flow with heat transfer for non-Newtonian nanofluid over a porous media

    No full text
    Abstract The current studies analytically summarize the impact of magnetohydrodynamic and thermal radiation on the non-Newtonian continuous uniform motion of viscid non-compressible nanofluid across a penetrable stretching/shrinking sheet, even though accomplish Navier's first and second order slips along mass transpiration. Blood-bearing silver and copper nanomaterials have distinct flow and heat transfer properties when exposed to heat. Silver (Ag) as well as copper (Cu) nanoparticles are assumed to be present in blood as the non-Newtonian liquid; this fluid serves as the base. We anticipate that the current study will be useful in fields including food, petrochemical products, and medicines, as well as blood circulation, and highly beneficial for patients who are dealing with blood clotting in the uterus, which may result in infertility or cancer, to evaluate the blood flow in the tube. Employing the similarity conversion technique, the ruling partial differential equations are modified into a couple of non-linear ordinary differential equations. Then the transformed ordinary differential equations are analytically solved with the Laplace transformation and expressed in terms of an incomplete gamma function. The current analytical results are compared to previous studies. It is addressed how several physical features such as magnetic field M, Navier’s first and second order slip, permeability, Prandtl number Pr, and radiation parameter affect non-dimensional velocity as well as temperature patterns through graphs. The results obtained reveal that there is an enhancement in the rate of heat transfer with the rise in nanoparticle volume fraction and radiation. The temperature distribution is also influenced by the presence of Prandtl numbers, radiation, solid volume fraction, permeability, and slip conditions. This shows that the solid volume fraction of nanoparticles can be used to control the behaviour of heat transfer and nanofluid flows

    An MHD Fluid Flow over a Porous Stretching/Shrinking Sheet with Slips and Mass Transpiration

    No full text
    In the present paper, an MHD three-dimensional non-Newtonian fluid flow over a porous stretching/shrinking sheet in the presence of mass transpiration and thermal radiation is examined. This problem mainly focusses on an analytical solution; graphene water is immersed in the flow of a fluid to enhance the thermal efficiency. The given non-linear PDEs are mapped into ODEs via suitable transformations, then the solution is obtained in terms of incomplete gamma function. The momentum equation is analyzed, and to derive the mass transpiration analytically, this mass transpiration is used in the heat transfer analysis and to find the analytical results with a Biot number. Physical significance parameters, including volume fraction, skin friction, mass transpiration, and thermal radiation, can be analyzed with the help of graphical representations. We indicate the unique solution at stretching sheet and multiple solution at shrinking sheet. The physical scenario can be understood with the help of different physical parameters, namely a Biot number, magnetic parameter, inverse Darcy number, Prandtl number, and thermal radiation; these physical parameters control the analytical results. Graphene nanoparticles are used to analyze the present study, and the value of the Prandtl number is fixed to 6.2. The graphical representations help to discuss the results of the present work. This problem is used in many industrial applications such as Polymer extrusion, paper production, metal cooling, glass blowing, etc. At the end of this work, we found that the velocity and temperature profile increases with the increasing values of the viscoelastic parameter and solid volume fraction; additionally, efficiency is increased for higher values of thermal radiation

    Magnetohydrodynamics flow of a nanofluid driven by a stretching/shrinking sheet with suction

    No full text
    The present paper investigates the effect of a mathematical model describing the aforementioned process in which the ambient nanofluid in the presence of suction/injection and magnetic field are taken into consideration. The flow is induced by an infinite elastic sheet which is stretched along its own plane. The stretching/shrinking of the sheet is assumed to be proportional to the distance from the slit. The governing equations are reduced to a nonlinear ordinary differential equation by means of similarity transformation. The consequential nonlinear equation is solved analytically. Consequences show that the flow field can be divided into a near-field region and a far-field region. Suction on the surface plays an important role in the flow development in the near-field whereas the far-field is responsible mainly by stretching. The electromagnetic effect plays exactly the same role as the MHD, which is to reduce the horizontal flow resulting from stretching. It is shown that the behavior of the fluid flow changes with the change of the nanoparticles type. The present study throws light on the analytical solution of a class of laminar boundary layer equations arising in the stretching/shrinking sheet problem
    corecore