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Abstract: The viscous fluid flow past a semi-infinite porous solid, which is proportionally sheared at
one boundary with the possibility of the fluid slipping according to Navier’s slip or second order slip,
is considered here. Such an assumption takes into consideration several of the boundary conditions
used in the literature, and is a generalization of them. Upon introducing a similarity transformation,
the governing equations for the problem under consideration reduces to a system of nonlinear partial
differential equations. Interestingly, we were able to obtain an exact analytical solution for the velocity,
though the equation is nonlinear. The flow through the porous solid is assumed to obey the Brinkman
equation, and is considered relevant to several applications.

Keywords: Brinkman equation; viscosity ratio; first- and second-order slip; similarity transformation;
porous medium

1. Introduction

The flow of a fluid through a porous medium has numerous applications in industries dealing
with polymer extrusion process, glass blowing, metallurgical processes, and geophysical and allied
areas (see [1]). A variety of equations have been used to describe the flow of a fluid through a porous
medium as it is one of the important key factors in maintaining the temperature in the medium.
These equations due to [2–5] and others, are merely approximations to the appropriate balance laws.
A variety of ideas have been suggested to model the flow of mixtures, and one such approach is
that which follows from the seminal works of Darcy and Brinkman and has been given a formal
structure by [6,7]. Several specific problems have been solved using such an approach (see [8–19]).
Here, we study the flow of a fluid through a porous media that is governed by the Brinkman equation
(see [20–30]) for a discussion of the status of the Brinkman equation within the context of mixture
theory). The fact that we are able to obtain an analytical solution to the problem makes the study
all the more interesting. Despite the fact that advanced computing facilities are available to obtain
the numerical solution, investigators around the world are much more interested in providing the
analytical solution due to their accuracy, relevance, and convenient to analyze physical process,
in comparison to numerical solutions. The analytical solution can provide a better assessment of
consistency and parameter estimates. Many authors have investigated the fluid flow through porous
media and provided analytical solution (see [31–37]). The novelty of this study is our use of a variety
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of boundary conditions that subsumes those that have been considered earlier, in addition to new
conditions concerning slip and proportional shearing at the boundary.

In this study, we consider the flow of a fluid through a semi-infinite porous media with one
boundary subject to the slipping or adherence of the fluid, the solid being proportionally sheared,
and the fluid being injected at the boundary (see Figure 1). We are able to obtain an analytical solution
by introducing a similarity variable that greatly simplifies the governing equation. The effects of the
boundary conditions on the flow through the porous media are determined.
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Figure 1. Schematic diagram showing stretching or contraction at the boundary.

2. Theoretical Model

Two dimensional laminar, steady, incompressible fluid flow through a porous media is considered.
The x-axis is taken along the stretching of the sheet in the direction of the motion, and y-axis is
perpendicular to the slit. In order to confine the fluid flow in the region y > 0, two forces of equal
strength are applied along the x-axis. u and v denote the axial as well as transverse velocities in the
flow field. Figure 1 depicts the physical flow problem subjected to the boundary conditions.

We considered the flow of the classical incompressible Navier-Stokes [38] fluid through a porous
half-space. We assumed that the equations governing the flow are those given by the Brinkman
equation for flow through porous media which assumes that the fluid is incompressible and, hence,
the conservation of mass reduces to

∇ ·
→
q = 0, (1)

and the conservation of linear momentum that takes the form

ρ

[
1
φ

→
q t +

1
φ

(
→
q · ∇

)
→
q
]
= −∇p + µe f f ∇

2→q −
µ

K
→
q , (2)

where µe f f represents the effective viscosity of the fluid(see [39,40]) provides the definition of the other
parameters. The Brinkman equation can be shown to be obtained as a systematic approximation using
mixture theory by assuming special structures for the interaction forces between the porous solid
and fluid, and assuming the porous solid is rigid (see [41] for a detailed derivation).The transformed
governing equations for the conservation of mass and the balance of linear momentum are given as

∂u
∂x

+
∂v
∂y

= 0, (3)

u
∂u
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+ v
∂u
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= −
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∂y2 −
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where ν = µ
ρ f

and νe f f =
µe f f
ρ f

. The Forchheimer term in the interaction is neglected as it produces little
impact on the fluid flow in a porous medium governed by the Brinkman equation (see [42]). Also,
the pressure gradient is neglected, and the time factor is zero for the steady case.

The governing boundary conditions are (see [43,44])

Here, d is the parameter of proportional shearing at the boundary, with d , 0 and d = 0 corresponding
to the boundary at y = 0 and being either proportionally sheared or being fixed. The constants A and
B represent the first- and second-order slip coefficients, respectively. Also, the mass transpiration
parameter, vc, represents suction or injection depending on vc > 0 or vc < 0, respectively.

In order to carry out the analysis, the physical stream functions in terms of similarity variables f
and η are introduced as follows:

ψ =
√
α νe f f x f (η), (6)

where

η =
1
φ

√
α
νe f f

y. (7)

In terms of physical stream function ψ, the axial and transverse velocities can be rewritten
as follows:

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (8)

The Equation (8) satisfies the continuity equation. Upon substitution of Equations (6) and (7) into
Equation (4), we obtain

Λ
∂3ψ

∂y3 +
∂(ψ, ∂ψ∂y )

∂(x, y)
−K1

∂ψ

∂y
= 0. (9)

Here, the second term indicates the Jacobian and subject. The appropriate boundary conditions are
(see [43,44]) as follows:

∂ψ

∂y
= dαx + A

∂u
∂y

+ B
∂2u
∂y2 ,

∂ψ

∂x
= vc at y = 0, (10a)

∂ψ

∂y
= 0, as y→∞. (10b)

Here, Λ =
µe f f
µ is the Brinkman number or viscosity ratio. Using Equations (9) and (10) with

Equation (6), the following transformed equation with constant coefficient is derived:

Λ fηηη + f fηη − f 2
η −K1 fη = 0. (11)

The governing boundary conditions for Equation (11) are given as

f (0) = Vc, fη(0) = d + Γ1 fηη(0) + Γ2 fηηη(0), at η = 0, (12)

fη(∞)→ 0 as η→∞, (13)
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where Γ1 = A
√
α
ν > 0 and Γ2 = Bα

ν < 0 are the first- and second-order slip parameters, and K1 =
νφ2

αK is

the reciprocal of Darcy number Da = l2
K , with l = φ

√
ν
α and Vc =

vc√
αρ as the mass suction/injection

parameters. The subscript denotes the derivative with respect to η.

3. The Analytical Solution

The flow problem considered is the generalization of the classical works of [43–48]. In our problem,
the viscous flow with first- and second-order velocity slips over a porous half-space that is stretched or
contracted at the boundary (see Figure 1), and the flow being governed by the Darcy–Brinkman model
is considered. One obtains nonlinear partial differentiation from Equations (3) and (4), which are
mapped into systems of the nonlinear ordinary differential Equation (11), with a constant coefficient
by means of similarity transformation subjected to the imposed boundary (12)–(13).The analytical
solution for the velocity distribution is determined.

The exact analytical solution of Equation (11) subjected to the governing boundary conditions
Equations (12) and (13) is derived. The condition in Equation (13) suggests choosing the equation of
the form

f (η) = A1 + B1 exp(−βη), (14)

where β > 0 is to be determined later. Also, A1 and B1 are constants that are to be determined by using
Equation (12):

A1 = Vc + d
(

1
β+ Γ1β2 − Γ2β3

)
and B1 = −d

(
1

β+ Γ1β2 − Γ2β3

)
. (15)

It follows from Equation (11), (14), and (15) that

ΛΓ2β
4
− (Λ Γ1 + VcΓ2)β

3 + (VcΓ1 −Λ −K1Γ2)β
2 + (Vc + K1Γ1)β− (d + K1) = 0. (16)

Here, β > 0 is one of the real roots (see [49,50]).
By using the transformation variable ξ = β+ a3

4 , Equation (16) transforms into

ξ4 + p ξ2 + q ξ+ r = 0, (17)

where p = a2 −
3
8 a2

3, q =
(
A1 −

1
2 A2A3 +

1
8 A3

3

)
, and r = a0 −

1
4 a1a3 +

1
16 a2a2

3 −
3

256 a4
3, and a3 = −Λ Γ1+VcΓ2

ΛΓ2
,

a2 = VcΓ1−Λ−K1Γ2
ΛΓ2

, a1 = Vc+K1Γ1
ΛΓ2

, a0 = d+K1
ΛΓ2

.
The four corresponding roots of the algebraic Equation (17) are

β1 =

√
C

2
+

1
2

√
D1 −

a3

4
, (18a)

β2 =

√
C

2
−

1
2

√
D1 −

a3

4
, (18b)

β3 = −

√
C

2
+

1
2

√
D1 −

a3

4
, (18c)

β4 = −

√
C

2
−

1
2

√
D1 −

a3

4
, (18d)

where

D1 = D−
2q
C

,

C = −
2p
3 + 21/3

(
p2 + 12r

)3(2p3 + 27q2
− 72pr +

√
−4(p2 + 12r)3 + (2p3 + 27q2 − 72pr)2

)1/3−1

+
(
21/3 3

)−1
(
2p3 + 27q2

− 72pr +
√
−4(p2 + 12r)3 + (2p3 + 27q2 − 72pr)2

)1/3
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and

D = −
4p
3 − 21/3

(
p2 + 12r

)3(2p3 + 27q2
− 72pr−

√
−4(p2 + 12r)3 + (2p3 + 27q2 − 72pr)2

)1/3−1

−

(
21/3 3

)−1
(
2p3 + 27q2

− 72pr +
√
−4(p2 + 12r)3 + (2p3 + 27q2 − 72pr)2

)1/3

Equation (18) gives the complete solution of Equation (17). However, it should be noted that
there is only one feasible solution for the Equation (17) when Γ2 < 0, and based on the flow field
Equation (16) has feasible solutions for β > 0.

4. Results and Discussion

In this paper, we were able to establish the impact of various physical parameters on the velocity
distribution. The solutions obtained are in good agreement with that of the classical works when
suitably restricted to specific conditions. The main emphasis of this study is the effect of boundary
conditions on the flow through porous media. There are several possibilities at the boundaries, namely,
the fluid meeting the no-slip adherence condition, the Navier slip condition, the second-order slip
condition, as well as the possibility of blowing of the fluid.

The effects of physical parameters such as the mass transpiration parameter (VC), first-order
Navier slip (Γ1), second-order slip (Γ2),Brinkman ratio (Λ), and proportional shearing parameter
(K1)are discussed graphically. As the velocity distribution is an exponential function with a negative
argument, it decreases with the increase in η. Since β is a function of mass transpiration parameter
(VC), first-order Navier slip (Γ1), second-order slip (Γ2), Brinkman ratio (Λ), and proportional shearing
parameter (K1)both axial as well as transverse velocities are forced to decrease exponentially.

The solution domain of β in Equation (16)has only complex roots when D1 < 0, only real roots
when D1 > 0,and real repeated roots when D1 = 0. Figure 2a–d depicts the solution behavior of β
verses VC for various values of D1 and Γ1. Figure 3a–d depicts the solution domain of β versus VC for
different values of K1. In fact, by choosing Γ2 = 0, Equation (16) reduces to a cubic equation and with
the proper choice of Γ1, Λ, and K1, and the results are reduced to those obtained by [43,51,52].

Figure 4a–c demonstrates the impact of first-order velocity slip with proportional shearing on the
solution domain of β versus Vc. The presence of a larger slip drags the separation curve towards the
slit. The viscous fluid flow in a permeable medium with slip in a stretching boundary is quite different
from that of a contracting boundary.
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Figure 4. (a) The solution domain for β versus Vc for different values of Γ1 for the case of a shrinking
boundary in the absence of Γ2. (b) The solution domain for β versus Vc for different values of K1 for the
case of a shrinking boundary with Γ1 = 0.5. (c) Solution domain for β versus Vc for different values of
K1 for the case of a shrinking boundary with Γ1 = 5.

Figure 5a,b depicts the axial velocity profiles for various values of first-order slip parameters,
and for the fixed values of other physical parameters. This plot clearly demonstrates that the increasing
Navier’s slip results in the reduction of the velocity boundary. In comparison to the lower branch
solution, the boundary layer thickness decreases in the case of upper branch solution. Furthermore,
under the given slip parameter and mass suction parameter, one can see the increasing velocity
boundary thickness with the increase in proportional shearing parameter. Also, the reduction in mass
suction leads to the decrease in velocity boundary for other physical parameters fixed. However,
for the case of mass injection, the velocity boundary increases with increasing values of slip parameter.
Thus, the flow geometry and the rate of change of velocity boundary layer thickness are significantly
influenced by the slip parameter.
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Figure 5. (a,b) Upper and lower solution branches of axial velocity profile, fη(η) verses η, for different
values of Navier slip parameter Γ1 when K1 = 0.5 and K1 = 2 for the case of a shrinking boundary.

Figure 6a–c demonstrates the effect of first- and second-order slip parameters on the axial, as well
as transverse velocity profiles respectively, in the accelerating boundary. From the plots, it is clear that
the increasing values of first-order slip for fixed values of various physical parameters results in the
velocity boundary profiles decreasing, whereas the decreasing value of second-order slip for fixed
values of other physical parameters results in the decreasing velocity boundary profiles.
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(b) Transverse velocity f (η) verses η for different values of Γ1 with Γ2 = −0.1 in the presence of K1

for the case of a stretching boundary. (c) Axial velocity fη(η) verses η for different values of Γ2 with
Γ1 = 0.5 in the presence of K1 for the case of a stretching boundary.

Figure 7a,b demonstrates the effect of Brinkman ratio on the axial and transverse velocity profiles.
From the plots, it can be seen that increasing values of Λ while keeping other physical parameters
fixed results in enhanced boundary layer thickness, whereas in Figure 7c,d, the different values of VC
with fixed Brinkman ratio result in exactly the opposite.
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Figure 7. (a) Axial velocity fη(η) verses η for different values of Λ in the presence of K1 for the case of a
stretching boundary.(b) Transverse velocity f (η) verses η for different values of Λ in the presence of K1

for the case of a stretching boundary. (c) Axial velocity fη(η) verses η for different values of Vc in the
presence of K1 for the case of a stretching boundary. (d) Transverse velocity f (η) verses η for different
values of VC in the presence of K1 for the case of the stretching boundary.

Figure 8a,b depicts the effect of various physical parameters on the shear stress profile. In all of
these plots, there are crossover points for the shear stress profiles, and the combined effects on the
porous solid can be observed. The increase in the values of Γ1, Γ2, and K1 results in increasing shear at
the wall boundary. In the case of mass injection, the shear wall boundary decreases faster for a smaller
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value of second-order slip parameter. Interestingly, however, the increasing value of Brinkman ratio
leads to decreasing shear wall boundary as seen in Figure 8a.
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5. Concluding Remarks

In conclusion, the viscous fluid flow past a porous solid wherein the flow is governed by the
Brinkman equation with first- and second-order slip in the presence of mass transpiration was
solved, and the exact analytical solution for the governing nonlinear partial differential equation was
obtained. The solution was analyzed for the effect of slip parameters, the mass transpiration parameter,
the Brinkman ratio, and the extent of shearing or contraction. In the case of the boundary contracting,
the solution branches (Figure 5a,b), whereas in the case of the boundary stretching there is only one
branch of the solution, and depending on the mass transpiration parameter, the solution is branched
(Figure 5a,b).
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